期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Theoretical methods for excited state dynamics of molecules and molecular aggregates 被引量:1
1
作者 SHI Qiang CHEN Hui 《Science China Chemistry》 SCIE EI CAS 2013年第9期1271-1276,共6页
This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Pr... This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". This study will focus on developments of novel methods to simulate excited state dynamics of molecular aggregates, with the aim of understanding several important chemical physics processes, and providing a solid foundation for predicting the opto-electronic properties of organic functional materials and devices. The contents of this study include: (1) The quantum chemical methods for electronic excited state and electronic couplings targeted for dynamics in molecular aggregates; (2) Methods to construct effective Hamiltonian models, and to solve their dynamics using system-bath approaches; (3) Non-adiabatic mixed quantum-classic methods targeted for molecular aggregates; (4) Theoretical studies of charge and energy transfer, and related spectroscopic phenomena in molecular aggregates. 展开更多
关键词 excited state dynamics molecular aggregates effective hamiltonian models mixed quantum-classical dynamics
原文传递
Theory and algorithms for the excited states of large molecules and molecular aggregates 被引量:2
2
作者 LIANG WanZhen WU Wei State 《Science China Chemistry》 SCIE EI CAS 2013年第9期1267-1270,共4页
This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodolo... This project aims to attack the frontiers of electronic structure calculations on the excited states of large molecules and molecular aggregates by developing novel theoretical and computational methods. The methodology development is especially based on the time-dependent density functional theory (TDDFT) and valence bond (VB) theory, and is expected to be computationally effective and accurate as well. Research works on the following related subjects will be performed: (1) The analytical energy-derivative approaches for electronically excited state within TDDFT will be developed to reduce bypass the computational costs in the calculation of molecular excited-state properties. (2) The ab initio methods for electronically excited state based on VB theory and hybrid TDDFT-VB method will be developed to overcome the limitations of current TDDFT in simulating photophysics and photochemistry. (3) For larger aggregates, neither ab initio methods nor TDDFT is applicable. We intend to build the effective model Hamiltonian by developing novel theoretical and computational methods to calculate the involved microscopic physical parameters from the first-principles methods. The constructed effective Hamiltonian is then used to describe the excitonic states and excitonic dynamics of the natural or artificial photosynthesized systems, organic or inorganic photovoltaic cell. (4) The condensed phase environment is taken into account by combining the developed theories and algorithms based on TDDFT and VB with the polarizable continuum solvent models (PCM), molecular mechanism (MM), classical electrodynamics (ED) or molecular dynamics (MD) theory. (5) Highly efficient software packages will be designed and developed. 展开更多
关键词 molecular aggregates excited state effective model hamiltonian time-dependent density functional theory (TDDFT) valence bond (VB) theory multiscale models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部