The effective dielectric response of linear composites containing graded material is investigated under an applied electric field E_0.For the cylindrical inclusion with gradient dielectric function,ει(r)=b+cr,random...The effective dielectric response of linear composites containing graded material is investigated under an applied electric field E_0.For the cylindrical inclusion with gradient dielectric function,ει(r)=b+cr,randomly embedded in a host with dielectric constant εm,we have obtained the exact solution of local electric potential of the composite media regions,which obeys a linear constitutive relation D=εE,using hypergeometric function.In dilute limit,we have derived the effective dielectric response of the linear composite media.Furthermore,for larger volume fraction,the formulas of effective dielectric response of the graded composite media are given.展开更多
Carbon hollow microspheres as microwave absorption materials(MAMs)are of great significance in the research focuses owing to their lightweight,good impedance matching,and modifiable dielectric proper-ties.However,it i...Carbon hollow microspheres as microwave absorption materials(MAMs)are of great significance in the research focuses owing to their lightweight,good impedance matching,and modifiable dielectric proper-ties.However,it is still a huge challenge to distinguish the contribution of dielectric attenuation between carbon intrinsic feature and hollow structure due to the lack of appropriate model materials.Then,the inadequate analysis of effective dielectric attenuation resulted in the construction of carbon hollow mi-crospheres semiempirical and often lacked precise modification of microstructure.Herein,a series of car-bon hollow microspheres with controllable graphitization and thickness of shell derived from phenolic resin coated on polystyrene microspheres that fully decomposed were synthesized,which is free of the impact of template residue.The carbon fragments ground from hollow microspheres exhibit the same broadband response as hollow microspheres,with effective bandwidth(RL<-10 dB)of 7.6 GHz,while their electromagnetic wave loss mechanisms are distinct.The high dielectric loss of carbon fragments with the same intrinsic characteristics as carbon hollow microspheres is mainly caused by dipole po-larization relaxation and enhancement of electrical conductivity ascribed to overlapping between carbon sheets.For the hollow structure,in addition to dipole polarization relaxation attributed to carbon intrin-sic feature,the effective dielectric loss is also comprised of the interfacial polarization in advantage due to the effective heterogeneous interface between air and carbon shell.This work provides a simplified model to clarify the effect of carbon intrinsic feature and microstructure on the dielectric loss of carbon hollow microspheres.展开更多
Transformation fieM method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectr...Transformation fieM method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectric axis are different from those of anisotropic crystal matrix. The complicated boundary-value problem caused by inclusion shapes is circumvented by introducing a transformation electric field into the crystal composites regions, and the effective anisotropic dielectric responses are formulated in terms of the transformation field. Furthermore, the numerical results show that the effective anisotropie dielectric responses of crystal composites periodically vary as a function of the rotating angle between the principal dielectric axes of inclusion and matrix crystal materials. It is found that at larger inclusion volume fraction the inclusion shapes induce profound effect on the effective anisotropic dielectric responses.展开更多
An analytical method was proposed dielectric properties for particulate composites. to calculate effective linear and nonlinear The method is based on an approximate solution of two-particle interaction problem, and i...An analytical method was proposed dielectric properties for particulate composites. to calculate effective linear and nonlinear The method is based on an approximate solution of two-particle interaction problem, and it can be applied to relatively high volume concentration of particles (up to 50%). Nonlinear dielectric property was also examined by means of secant method. It is found that for low applied electric filed the proposed method is close to Stroud and Hui's method and for high applied electric filed it is close to Yu's method.展开更多
Considering the dielectric confinement effect on excitonics of PbSe quantum dots (QDs), a correction factor in the wave function was introduced to propose a new band gap calculation model for QDs. The modified model...Considering the dielectric confinement effect on excitonics of PbSe quantum dots (QDs), a correction factor in the wave function was introduced to propose a new band gap calculation model for QDs. The modified model showed great consistency with the experimental data, especially in small size range. According to the variation of confined barrier, the band gap calculation model of PbSe QDs was analyzed in different solvents. The calculating results showed that the modified model was almost solvent-independent, which was consistent with our experimental results and related reports.展开更多
Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian p...Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian planets,including Saturn,Uranus,Neptune and Jupiter’s moons,are believed to have robust electron radiation belts at relativistic energies.In particular,Jupiter is thought to have caused at least 42 internal electrostatic discharge events during the Voyager 1 flyby.With the development of deep space exploration,there is an increased focus on the deep dielectric charging effects in the orbits of Jovian planets.In this paper,GEANT4,a Monte Carlo toolkit,and radiation-induced conductivity(RIC)are used to calculate deep dielectric charging effects for Jovian planets.The results are compared with the criteria for preventing deep dielectric charging effects in Earth orbit.The findings show that effective criteria used in Earth orbit are not always appropriate for preventing deep dielectric charging effects in Jovian orbits.Generally,Io,Europa,Saturn(R_S=6),Uranus(L=4.73)and Ganymede missions should have a thicker shield or higher dielectric conductivity,while Neptune(L=7.4)and Callisto missions can have a thinner shield thickness or a lower dielectric conductivity.Moreover,dielectrics grounded with double metal layers and thinner dielectrics can also decrease the likelihood of discharges.展开更多
In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding ...In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding medium, which not only transmits visible light but also inhibits the transmission of microwaves, despite the fact that the total thickness of the Ag film is much larger than the skin depth in the visible range and less than that in the microwave region. Theoretical results suggest that a high dielectric/metal thickness ratio can enhance the broadband and improve the transmittance in the optical range. Accordingly, the central wavelength was found to be red-shifted with increasing dielectric/metal thickness ratio. A physical mechanism behind the controlling transmission of visible light is also proposed. Meanwhile, the electromagnetic shielding effectiveness of the prepared structures was found to exceed 40 dB in the range from 0.1 GHz to 18 GHz, even reaching up to 70 dB at 0.1 GHz, which is far higher than that of a single ITO film of the same thickness.展开更多
The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QOD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric con...The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QOD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. p-IO//z-PR mixing modes and the z-IO//p-PR mixing modes existing in QOD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrieal forms. Via a standard procedure of field quantization, the Frohlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes "reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QOD QDs to the IO modes and PR modes in wurtzite Q2D QW and QID QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.展开更多
The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the te...The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the temperature range from 20 to 50℃. The varnish films were subjected to accelerated ageing by heating at 110℃ for diferent durations. The efect of the accelerated ageing on e' and e' were measured. The activation energy and the entropy change of dielectric relaxation for the dry films before and after ageing were also calculated. All the results obtained were recorded and discussed in correlation with the molecular structure of the investigated varnishes.展开更多
Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites ca...Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells(PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs.展开更多
Perovskite solar cells(pero-SCs)performance is essentially limited by severe non-radiative losses and ion migration.Although numerous strategies have been proposed,challenges remain in the basic understanding of their...Perovskite solar cells(pero-SCs)performance is essentially limited by severe non-radiative losses and ion migration.Although numerous strategies have been proposed,challenges remain in the basic understanding of their origins.Here,we report a dielectric-screening-enhancement effect for perovskite defects by using organic semiconductors with finely tuned molecular structures from the atoms level.Our method produced various perovskite films with high dielectric constant values,reduced charge capture regions,suppressed ion migration,and it provides an efficient charge transport pathway for suppressing non-radiative recombination beyond the passivation effect.The resulting pero-SCs showed a promising power conversion efficiency(PCE)of 23.35%with a high open-circuit voltage(1.22 V);and the 1-cm^(2) pero-SCs maintained an excellent PCE(21.93%),showing feasibility for scalable fabrication.The robust operational and thermal stabilities revealed that this method paved a new way to understand the degradation mechanism of pero-SCs,promoting the efficiency,stability and scaled fabrication of the pero-SCs.展开更多
The effect of dielectric constant contrast and the filling factor to the photonic bandgap in a 2-D square lattice photonic crystal is discussed. The location, width and number of photonic bandgap can be modulated.
Dielectric spectra of 4A zeolite particles bulked in deionized water(4A/W) or cyclohexane(4A/C) were measured respectively under different temperatures, and two dielectric relaxations were found in both of 4A/W an...Dielectric spectra of 4A zeolite particles bulked in deionized water(4A/W) or cyclohexane(4A/C) were measured respectively under different temperatures, and two dielectric relaxations were found in both of 4A/W and 4A/C. Because of existence of water molecules in pores, both low and high frequency relaxation times(t LFR and t HFR) of 4A/W decreased more sharply than 4A/C with increasing temperature.According to the temperature dependence of t LFR and t HFR, the activation energies of Na+interacting with framework under hydrated and dehydrated environments were calculated respectively, and the original properties of Na+in dehydrated zeolite were obtained by analyzing the dielectric properties of 4A/C.Furthermore, a transient state of Na+motion with temperature was found in 4A/C system.展开更多
The effect of the different re-oxidation annealing (ROA) processes on the SiO2/SiC interface charac- teristics has been investigated. With different annealing processes, the flat band voltage, effective dielectric c...The effect of the different re-oxidation annealing (ROA) processes on the SiO2/SiC interface charac- teristics has been investigated. With different annealing processes, the flat band voltage, effective dielectric charge density and interface trap density are obtained from the capacitance-voltage curves. It is found that the lowest interface trap density is obtained by the wet-oxidation annealing process at 1050 ℃ for 30 min, while a large num- ber of effective dielectric charges are generated. The components at the SiO2/SiC interface are analyzed by X-ray photoelectron spectroscopy (XPS) testing. It is found that the effective dielectric charges are generated due to the existence of the C and H atoms in the wet-oxidation annealing process.展开更多
Light-matter interactions in two-dimensional transition metal dichalcogenides(TMDs)are sensitive to the surrounding dielectric environment.Depending on the interacting strength,weak and strong exciton–photon coupling...Light-matter interactions in two-dimensional transition metal dichalcogenides(TMDs)are sensitive to the surrounding dielectric environment.Depending on the interacting strength,weak and strong exciton–photon coupling effects can occur when the exciton energy is resonant with the one of photon.Here we report angle-resolved spectroscopic signatures of monolayer tungsten disulfide(1L-WS2)in weak and strong exciton–photon coupling environments.Inherent optical response of 1L-WS_(2)in the momentum space is uncovered by employing a dielectric mirror as substrate,where the energy dispersion is angleindependent while the amplitudes increase at high detection angles.When 1L-WS_(2)sits on top of a dielectric layer on silicon,the resonant trapped photon weakly couples with the exciton,in which the minimum of reflection dip shifts at both sides of the crossing angle while the emitted exciton energy remains unchanged.The unusual shift of reflection dip is attributed to the presence of Fano resonance under white-light illumination.By embedding 1L-WS_(2)into a dielectric microcavity,strong exciton–photon coupling results in the formation of lower and upper polariton branches with an appreciable Rabi splitting of 34 meV at room temperature,where the observed blueshift of the lower polariton branch is indicative of the enhanced polaritonpolariton scattering.Our findings highlight the effect of dielectric environment on angle-resolved optical response of exciton–photon interactions in a two-dimensional semiconductor,which is helpful to develop practical TMD-based architectures for photonic and polaritonic applications.展开更多
The interlayer coupling in van der Waals(vdW)heterostructures(vdWHs)is at the frontier of the fundamental research,underlying many optical behaviors.The graphene/MoS_(2) vdWHs provide an ideal platform to reveal the g...The interlayer coupling in van der Waals(vdW)heterostructures(vdWHs)is at the frontier of the fundamental research,underlying many optical behaviors.The graphene/MoS_(2) vdWHs provide an ideal platform to reveal the good interfacial coupling between graphene and MoS_(2) constituents.Here,three groups of graphene/MoS_(2) vdWHs were prepared by transferring 1–3 layers of graphene onto monolayer MoS_(2).The interlayer coupling within graphene/MoS_(2) vdWHs were characterized and analyzed by Raman spectroscopy,photoluminescence(PL)spectroscopy and optical contrast(OC)spectroscopy.The upshift of the A_(1g) peak of MoS_(2) and the upshift of the D and 2D peaks of SLG show that the electrons move from MoS_(2) to graphene accompanied by the dielectric shielding effect on graphene.The weakened PL intensities and the slight red shift of A peak prove that the electrons move from MoS_(2) to graphene meanwhile the recombination of hole and electron pairs is blocked in vdWHs.Our results deepen the understanding of the interlayer coupling of graphene/MoS_(2) vdWHs and therefore provide guidelines for the practical design and application of optoelectronic devices based on graphene/MoS_(2) vdWHs.展开更多
The deep dielectric charging effect monitor(DDCEM)has been designed to study the internal charging effect by measuring the charging currents and potentials inside the spacecraft.It is equipped on three Chinese navigat...The deep dielectric charging effect monitor(DDCEM)has been designed to study the internal charging effect by measuring the charging currents and potentials inside the spacecraft.It is equipped on three Chinese navigation satellites in a circular medium earth orbit(MEO)with 22000 km average height and 55°inclinations.Numerical simulation based on the Geant4-RIC method was used to evaluate the data of DDCEM.The data during May to November 2019 on one of the three satellites show that the charging currents of DDCEM were negatively enhanced when the satellite moved into the outer radiation belt.The currents reached the negative maximum during a significant electron enhancement in September 2019.Positive currents were also detected besides negative currents that were caused by the deposition of electrons in the sensor.The causation of positive currents in the space environment may be that the low-energy electrons cannot penetrate the satellite skin and make it charging to negative potential,the reference ground of DDCEM that is connected to the satellite skin drops below zero by the low-energy electrons so that the output currents turn to positive.Ground experiment was used to simulate the causation of positive currents and the result verified our theory.展开更多
The structure and properties of a 16-atom body-centered cubic lithium cell with an interstitial hydrogen atom are studied using a pseudopotential-plane-wave method within the density functional theory at 0 K and high ...The structure and properties of a 16-atom body-centered cubic lithium cell with an interstitial hydrogen atom are studied using a pseudopotential-plane-wave method within the density functional theory at 0 K and high pressures. The host lattice is dra-matically distorted by the introduction of H. Although the hydrogen atom is stable at the tetragonal site in perfect bcc host lattice,it favors the octahedral site formed by six non-equivalent Li atoms after full relaxation of the cell,showing P4/mmm symmetry within the pressures ranging from 0 to 6 GPa. The lattice ratio (a/c) changes irregularly with external pressure at about 3 GPa. The hydrogen band lies in the bottom of the valence band,separated by a gap from the metallic bands,illustrating the electronegativity of hydrogen. High reflectivity in the low frequency area induced by the impurity hydrogen is observed when only interband transitions are taken account of. A dip in reflectivity due to parallel band transitions is observed at ~0.4 eV. Another dip at ~4.3 eV appears when external pressure increases over 4 GPa.展开更多
文摘The effective dielectric response of linear composites containing graded material is investigated under an applied electric field E_0.For the cylindrical inclusion with gradient dielectric function,ει(r)=b+cr,randomly embedded in a host with dielectric constant εm,we have obtained the exact solution of local electric potential of the composite media regions,which obeys a linear constitutive relation D=εE,using hypergeometric function.In dilute limit,we have derived the effective dielectric response of the linear composite media.Furthermore,for larger volume fraction,the formulas of effective dielectric response of the graded composite media are given.
基金National Natural Science Foundation of China(grant No.51802278)Natural Science Foundation of Hebei Province(grant Nos.B2021203012,E2022203082)Department of Education of Hebei Province(grant No.QN2021140).
文摘Carbon hollow microspheres as microwave absorption materials(MAMs)are of great significance in the research focuses owing to their lightweight,good impedance matching,and modifiable dielectric proper-ties.However,it is still a huge challenge to distinguish the contribution of dielectric attenuation between carbon intrinsic feature and hollow structure due to the lack of appropriate model materials.Then,the inadequate analysis of effective dielectric attenuation resulted in the construction of carbon hollow mi-crospheres semiempirical and often lacked precise modification of microstructure.Herein,a series of car-bon hollow microspheres with controllable graphitization and thickness of shell derived from phenolic resin coated on polystyrene microspheres that fully decomposed were synthesized,which is free of the impact of template residue.The carbon fragments ground from hollow microspheres exhibit the same broadband response as hollow microspheres,with effective bandwidth(RL<-10 dB)of 7.6 GHz,while their electromagnetic wave loss mechanisms are distinct.The high dielectric loss of carbon fragments with the same intrinsic characteristics as carbon hollow microspheres is mainly caused by dipole po-larization relaxation and enhancement of electrical conductivity ascribed to overlapping between carbon sheets.For the hollow structure,in addition to dipole polarization relaxation attributed to carbon intrin-sic feature,the effective dielectric loss is also comprised of the interfacial polarization in advantage due to the effective heterogeneous interface between air and carbon shell.This work provides a simplified model to clarify the effect of carbon intrinsic feature and microstructure on the dielectric loss of carbon hollow microspheres.
基金Supported by the Centre for Smart Materials of the Hong Kong Polytechnic University and a RGC grant PolyU5015/06P (internal code B-Q996) of the HKSAR, the NSFC under Grant No. 40876094National 863 Project under Grant Nos. 2009AA09Z102 and 2008AA09A403
文摘Transformation fieM method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectric axis are different from those of anisotropic crystal matrix. The complicated boundary-value problem caused by inclusion shapes is circumvented by introducing a transformation electric field into the crystal composites regions, and the effective anisotropic dielectric responses are formulated in terms of the transformation field. Furthermore, the numerical results show that the effective anisotropie dielectric responses of crystal composites periodically vary as a function of the rotating angle between the principal dielectric axes of inclusion and matrix crystal materials. It is found that at larger inclusion volume fraction the inclusion shapes induce profound effect on the effective anisotropic dielectric responses.
基金Project supported by the National Natural Science Foundation of China (No.10325210)
文摘An analytical method was proposed dielectric properties for particulate composites. to calculate effective linear and nonlinear The method is based on an approximate solution of two-particle interaction problem, and it can be applied to relatively high volume concentration of particles (up to 50%). Nonlinear dielectric property was also examined by means of secant method. It is found that for low applied electric filed the proposed method is close to Stroud and Hui's method and for high applied electric filed it is close to Yu's method.
文摘Considering the dielectric confinement effect on excitonics of PbSe quantum dots (QDs), a correction factor in the wave function was introduced to propose a new band gap calculation model for QDs. The modified model showed great consistency with the experimental data, especially in small size range. According to the variation of confined barrier, the band gap calculation model of PbSe QDs was analyzed in different solvents. The calculating results showed that the modified model was almost solvent-independent, which was consistent with our experimental results and related reports.
基金supported by Beijing Municipal Natural Science Foundation-Quantitative Research on Mitigating Deep Dielectric Charging Effects in Jupiter orbits(No.3184048)National Key Scientific Instrument and Equipment Development Projects,China(No.2012YQ03014207)。
文摘Deep dielectric charging/discharging,caused by high energy electrons,is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures.The Jovian planets,including Saturn,Uranus,Neptune and Jupiter’s moons,are believed to have robust electron radiation belts at relativistic energies.In particular,Jupiter is thought to have caused at least 42 internal electrostatic discharge events during the Voyager 1 flyby.With the development of deep space exploration,there is an increased focus on the deep dielectric charging effects in the orbits of Jovian planets.In this paper,GEANT4,a Monte Carlo toolkit,and radiation-induced conductivity(RIC)are used to calculate deep dielectric charging effects for Jovian planets.The results are compared with the criteria for preventing deep dielectric charging effects in Earth orbit.The findings show that effective criteria used in Earth orbit are not always appropriate for preventing deep dielectric charging effects in Jovian orbits.Generally,Io,Europa,Saturn(R_S=6),Uranus(L=4.73)and Ganymede missions should have a thicker shield or higher dielectric conductivity,while Neptune(L=7.4)and Callisto missions can have a thinner shield thickness or a lower dielectric conductivity.Moreover,dielectrics grounded with double metal layers and thinner dielectrics can also decrease the likelihood of discharges.
基金Project supported by the International Science&Technology Cooperation Program of China(Grant No.2014DFR10020)the Science Foundation of Shanxi Province,China(Grant Nos.201701D121050 and 201701D121007)
文摘In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding medium, which not only transmits visible light but also inhibits the transmission of microwaves, despite the fact that the total thickness of the Ag film is much larger than the skin depth in the visible range and less than that in the microwave region. Theoretical results suggest that a high dielectric/metal thickness ratio can enhance the broadband and improve the transmittance in the optical range. Accordingly, the central wavelength was found to be red-shifted with increasing dielectric/metal thickness ratio. A physical mechanism behind the controlling transmission of visible light is also proposed. Meanwhile, the electromagnetic shielding effectiveness of the prepared structures was found to exceed 40 dB in the range from 0.1 GHz to 18 GHz, even reaching up to 70 dB at 0.1 GHz, which is far higher than that of a single ITO film of the same thickness.
基金Supported by National Natural Science Foundation of China under Grant Nos. 60711120203, 60890193STPAA of Guangzhou City under Grant No. 2060
文摘The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QOD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. p-IO//z-PR mixing modes and the z-IO//p-PR mixing modes existing in QOD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrieal forms. Via a standard procedure of field quantization, the Frohlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes "reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QOD QDs to the IO modes and PR modes in wurtzite Q2D QW and QID QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.
文摘The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the temperature range from 20 to 50℃. The varnish films were subjected to accelerated ageing by heating at 110℃ for diferent durations. The efect of the accelerated ageing on e' and e' were measured. The activation energy and the entropy change of dielectric relaxation for the dry films before and after ageing were also calculated. All the results obtained were recorded and discussed in correlation with the molecular structure of the investigated varnishes.
基金financially supported by National Natural Science Foundation of China (Grants Nos. 52273182, 21875122)。
文摘Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells(PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs.
基金supported by the National Key Research and Development Program of China(2020YFB1506400)the National Natural Science Foundation of China(51922074,22075194,and 51820105003)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJA430010)the Tang Scholarthe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Collaborative Innovation Center of Suzhou Nano Science and Technology。
文摘Perovskite solar cells(pero-SCs)performance is essentially limited by severe non-radiative losses and ion migration.Although numerous strategies have been proposed,challenges remain in the basic understanding of their origins.Here,we report a dielectric-screening-enhancement effect for perovskite defects by using organic semiconductors with finely tuned molecular structures from the atoms level.Our method produced various perovskite films with high dielectric constant values,reduced charge capture regions,suppressed ion migration,and it provides an efficient charge transport pathway for suppressing non-radiative recombination beyond the passivation effect.The resulting pero-SCs showed a promising power conversion efficiency(PCE)of 23.35%with a high open-circuit voltage(1.22 V);and the 1-cm^(2) pero-SCs maintained an excellent PCE(21.93%),showing feasibility for scalable fabrication.The robust operational and thermal stabilities revealed that this method paved a new way to understand the degradation mechanism of pero-SCs,promoting the efficiency,stability and scaled fabrication of the pero-SCs.
基金This work was supported by the National Nature Science Foundation of China under grants No. 60225011major state basic research program under grant No. G20000366
文摘The effect of dielectric constant contrast and the filling factor to the photonic bandgap in a 2-D square lattice photonic crystal is discussed. The location, width and number of photonic bandgap can be modulated.
基金supported by Beijing Natural Science Foundation (Nos. 2143040, 2144047)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (No. CIT&TCD201504009)National Natural Science Foundation of China (No. 21301012)
文摘Dielectric spectra of 4A zeolite particles bulked in deionized water(4A/W) or cyclohexane(4A/C) were measured respectively under different temperatures, and two dielectric relaxations were found in both of 4A/W and 4A/C. Because of existence of water molecules in pores, both low and high frequency relaxation times(t LFR and t HFR) of 4A/W decreased more sharply than 4A/C with increasing temperature.According to the temperature dependence of t LFR and t HFR, the activation energies of Na+interacting with framework under hydrated and dehydrated environments were calculated respectively, and the original properties of Na+in dehydrated zeolite were obtained by analyzing the dielectric properties of 4A/C.Furthermore, a transient state of Na+motion with temperature was found in 4A/C system.
基金Project supported by the National Natural Science Foundation of China(Nos.51272202,61234006,61274079)
文摘The effect of the different re-oxidation annealing (ROA) processes on the SiO2/SiC interface charac- teristics has been investigated. With different annealing processes, the flat band voltage, effective dielectric charge density and interface trap density are obtained from the capacitance-voltage curves. It is found that the lowest interface trap density is obtained by the wet-oxidation annealing process at 1050 ℃ for 30 min, while a large num- ber of effective dielectric charges are generated. The components at the SiO2/SiC interface are analyzed by X-ray photoelectron spectroscopy (XPS) testing. It is found that the effective dielectric charges are generated due to the existence of the C and H atoms in the wet-oxidation annealing process.
基金support of the Fundamental Research Funds for the Central Universities of China,the National Natural Science Foundation of China(No.61904151)the Natural Science Foundation of Shaanxi(No.2020JM-108)+2 种基金the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-020)T.Y thanks the support of the Singapore National Research Foundation(NRF)under the Competitive Research Programs(No.NRF-CRP-21-2018-0007)X.W.Z.thanks the support of National Natural Science Foundation of China(No.12174422).
文摘Light-matter interactions in two-dimensional transition metal dichalcogenides(TMDs)are sensitive to the surrounding dielectric environment.Depending on the interacting strength,weak and strong exciton–photon coupling effects can occur when the exciton energy is resonant with the one of photon.Here we report angle-resolved spectroscopic signatures of monolayer tungsten disulfide(1L-WS2)in weak and strong exciton–photon coupling environments.Inherent optical response of 1L-WS_(2)in the momentum space is uncovered by employing a dielectric mirror as substrate,where the energy dispersion is angleindependent while the amplitudes increase at high detection angles.When 1L-WS_(2)sits on top of a dielectric layer on silicon,the resonant trapped photon weakly couples with the exciton,in which the minimum of reflection dip shifts at both sides of the crossing angle while the emitted exciton energy remains unchanged.The unusual shift of reflection dip is attributed to the presence of Fano resonance under white-light illumination.By embedding 1L-WS_(2)into a dielectric microcavity,strong exciton–photon coupling results in the formation of lower and upper polariton branches with an appreciable Rabi splitting of 34 meV at room temperature,where the observed blueshift of the lower polariton branch is indicative of the enhanced polaritonpolariton scattering.Our findings highlight the effect of dielectric environment on angle-resolved optical response of exciton–photon interactions in a two-dimensional semiconductor,which is helpful to develop practical TMD-based architectures for photonic and polaritonic applications.
基金This work is supported by the National Natural Science foundation of China(NSFC)(No.11904154)Hebei Province Natural Science Foundation(A2020201028).
文摘The interlayer coupling in van der Waals(vdW)heterostructures(vdWHs)is at the frontier of the fundamental research,underlying many optical behaviors.The graphene/MoS_(2) vdWHs provide an ideal platform to reveal the good interfacial coupling between graphene and MoS_(2) constituents.Here,three groups of graphene/MoS_(2) vdWHs were prepared by transferring 1–3 layers of graphene onto monolayer MoS_(2).The interlayer coupling within graphene/MoS_(2) vdWHs were characterized and analyzed by Raman spectroscopy,photoluminescence(PL)spectroscopy and optical contrast(OC)spectroscopy.The upshift of the A_(1g) peak of MoS_(2) and the upshift of the D and 2D peaks of SLG show that the electrons move from MoS_(2) to graphene accompanied by the dielectric shielding effect on graphene.The weakened PL intensities and the slight red shift of A peak prove that the electrons move from MoS_(2) to graphene meanwhile the recombination of hole and electron pairs is blocked in vdWHs.Our results deepen the understanding of the interlayer coupling of graphene/MoS_(2) vdWHs and therefore provide guidelines for the practical design and application of optoelectronic devices based on graphene/MoS_(2) vdWHs.
基金supported by the National Natural Science Foundation of China (Grant No. 41374181)the Beijing Municipal Natural Science Foundation (Grant No. 3184048)
文摘The deep dielectric charging effect monitor(DDCEM)has been designed to study the internal charging effect by measuring the charging currents and potentials inside the spacecraft.It is equipped on three Chinese navigation satellites in a circular medium earth orbit(MEO)with 22000 km average height and 55°inclinations.Numerical simulation based on the Geant4-RIC method was used to evaluate the data of DDCEM.The data during May to November 2019 on one of the three satellites show that the charging currents of DDCEM were negatively enhanced when the satellite moved into the outer radiation belt.The currents reached the negative maximum during a significant electron enhancement in September 2019.Positive currents were also detected besides negative currents that were caused by the deposition of electrons in the sensor.The causation of positive currents in the space environment may be that the low-energy electrons cannot penetrate the satellite skin and make it charging to negative potential,the reference ground of DDCEM that is connected to the satellite skin drops below zero by the low-energy electrons so that the output currents turn to positive.Ground experiment was used to simulate the causation of positive currents and the result verified our theory.
基金This work was supported by the National Natural Science Foundation of China (Grant No.10574053),the NSAF of China (Grant No.10276016)Program for New Century Excellent Talents in University (2004)+2 种基金the Excellent Young Teachers Program of Ministry of Education of China (2003)the National Basic Research Program of China (Grant No.2005CB724400) the Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No.2004-295).
文摘The structure and properties of a 16-atom body-centered cubic lithium cell with an interstitial hydrogen atom are studied using a pseudopotential-plane-wave method within the density functional theory at 0 K and high pressures. The host lattice is dra-matically distorted by the introduction of H. Although the hydrogen atom is stable at the tetragonal site in perfect bcc host lattice,it favors the octahedral site formed by six non-equivalent Li atoms after full relaxation of the cell,showing P4/mmm symmetry within the pressures ranging from 0 to 6 GPa. The lattice ratio (a/c) changes irregularly with external pressure at about 3 GPa. The hydrogen band lies in the bottom of the valence band,separated by a gap from the metallic bands,illustrating the electronegativity of hydrogen. High reflectivity in the low frequency area induced by the impurity hydrogen is observed when only interband transitions are taken account of. A dip in reflectivity due to parallel band transitions is observed at ~0.4 eV. Another dip at ~4.3 eV appears when external pressure increases over 4 GPa.