A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transf...A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.展开更多
Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu...Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.展开更多
An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently ...An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently from the even mass number isotopes. This mass-indepen- dent isotope fractionation driving force, which originates from the difference in the ground-state electronic energies caused by differences in nuclear size and shape, is cur- rently denoted as the nuclear field shift effect (NFSE). It is found that the NFSE can drive isotope fractionation of some heavy elements (e.g., Hg, T1, U) to an astonishing degree, far more than the magnitude caused by the con- ventional mass-dependent effect (MDE). For light ele- ments, the MDE is the dominant factor in isotope fractionation, while the NFSE is neglectable. Furthermore, the MDE and the NFSE both decrease as temperatures increase, though at different rates. The MDE decreases rapidly with a factor of 1/T2, while the NFSE decreases slowly with a factor of 1/T. As a result, even at high temperatures, the NFSE is still significant for many heavy element isotope systems. In this review paper, we begin with an introduction of the basic concept of the NSFE, including its history and recent progress, and follow with the potential implications of the inclusion of the NFSE into the kinetic isotope fractionation effect (KIE) and heavy isotope geochronology.展开更多
The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich...The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.展开更多
In this paper, a new method is proposed to study the mechanism of charge collection in single event transient (SET) production in 90 nm bulk complementary metal oxide semiconductor (CMOS) technology. We find that ...In this paper, a new method is proposed to study the mechanism of charge collection in single event transient (SET) production in 90 nm bulk complementary metal oxide semiconductor (CMOS) technology. We find that different from the case in the pMOSFET, the parasitic bipolar amplification effect (bipolar effect) in the balanced inverter does not exist in the nMOSFET after the ion striking. The influence of the suhstrate process on the bipolar effect is also studied in the pMOSFET. We find that the bipolar effect can be effectively mitigated by a buried deep P+-well layer and can be removed by a buried SO2 layer.展开更多
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco...The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.展开更多
Calcium modified lead titanate nanocrystal material Pb0.85Ca0.15TiO3 was synthesized by means of a solgel method.The changes of crystal structure and grainsize of the samples were investigated under different conditio...Calcium modified lead titanate nanocrystal material Pb0.85Ca0.15TiO3 was synthesized by means of a solgel method.The changes of crystal structure and grainsize of the samples were investigated under different conditions of heat treatment.the results show that the tetragonal symmetry is reduced and the ferroelectricparaelectric phase transformation temperature is decreased with the reduce of the grainsize of the sample.the critical grainsize for the ferroelectricparaelectric phase transformation at room temperature was calculated.The change regularities of the lattice constant and tetragonality with the grainsize are discussed.展开更多
Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole...Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.展开更多
The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotro...The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current,respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect.展开更多
The relativistic and distorted wave effects are investigated for the electron momentum distributions of Xe 4d electrons.The theoretical results show good agreements with the experimental data measured previously with ...The relativistic and distorted wave effects are investigated for the electron momentum distributions of Xe 4d electrons.The theoretical results show good agreements with the experimental data measured previously with electron momentum spectroscopy. The distorted wave effect and the relativistic effect are found to play important roles in the low and high momentum regions, respectively.展开更多
The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be...The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.展开更多
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low...Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.展开更多
Total ionizing dose responses of different transistor geometries after being irradiated by ^(60)Co γ-rays, in 0.13-μm partially-depleted silicon-on-insulator(PD SOI) technology are investigated. The negative thr...Total ionizing dose responses of different transistor geometries after being irradiated by ^(60)Co γ-rays, in 0.13-μm partially-depleted silicon-on-insulator(PD SOI) technology are investigated. The negative threshold voltage shift in an n-type metal-oxide semiconductor field effect transistor(nMOSFET) is inversely proportional to the channel width due to radiation-induced charges trapped in trench oxide, which is called the radiation-induced narrow channel effect(RINCE).The analysis based on a charge sharing model and three-dimensional technology computer aided design(TCAD) simulations demonstrate that phenomenon. The radiation-induced leakage currents under different drain biases are also discussed in detail.展开更多
Larix gmelinii var.principis-rupprechtii(Mayr.)Pilger is an important native tree species in North China with advantages of fast growth,straight trunk,and good wood properties.The multi-year and multi-site breeding re...Larix gmelinii var.principis-rupprechtii(Mayr.)Pilger is an important native tree species in North China with advantages of fast growth,straight trunk,and good wood properties.The multi-year and multi-site breeding research of families of the species has not been reported previously.Based on diameter at breast height(DBH),height and volume of 25 families on four experimental sites,we calculated variance components,genetic parameters,juvenile and mature trait correlations and made genotype main effect plus genotype×environment interaction effect(GGE)biplot based on the breeding values estimated using the method of best linear unbiased prediction(BLUP).Compared with height,DBH and volume had higher heritability and larger variation coefficients,making them the more suitable traits for family selection and evaluation.Based on these,GGE biplots containing 20 combinations of site×age were drawn using data at 13 to 17 years when the interactions between family and location were strong.Test sites classifications based on DBH,and volume were inconsistent,with two categories for DBH and one for volume.The Guyuan site was the most suitable with strong discriminating ability,high representativeness and stability among tree ages.Integrating the ranking results of DBH and volume,families 66,76,82 and 111 were high-yielding and stable,families 78 and96 were high-yielding with above average stability,families72 and 79 were high-yielding with below average stability,whereas stability of family 100 was inconsistent between DBH and volume.Early selection based on DBH was convenient and reliable,and can be made at seven years.This study provides support for the selection of Larix gmelinii var.principis-rupprechtii families in Hebei province and an example for the application of stem analysis data from multiple sites in tree breeding.展开更多
This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time doma...This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.展开更多
We propose a scaling theory for single gate Al In Sb/In Sb high electron mobility transistors(HEMTs) by solving the two-dimensional(2D) Poisson equation. In our model, the effective conductive path effect(ECPE) ...We propose a scaling theory for single gate Al In Sb/In Sb high electron mobility transistors(HEMTs) by solving the two-dimensional(2D) Poisson equation. In our model, the effective conductive path effect(ECPE) is taken into account to overcome the problems arising from the device scaling. The potential in the effective conducting path is developed and a simple scaling equation is derived. This equation is solved to obtain the minimum channel potential Φdeff,minand the new scaling factor α to model the subthreshold behavior of the HEMTs. The developed model minimizes the leakage current and improves the subthreshold swing degradation of the HEMTs. The results of the analytical model are verified by numerical simulation with a Sentaurus TCAD device simulator.展开更多
Objective To and connexin 43. Methods investigate the possible relationship between the analgesic effect of acupuncture Connexin 43 gene knock-out mice were randomly divided into 4 groups: a wide type (WT) control ...Objective To and connexin 43. Methods investigate the possible relationship between the analgesic effect of acupuncture Connexin 43 gene knock-out mice were randomly divided into 4 groups: a wide type (WT) control group, a WT acupuncture group, a heterozygous (HT) control group and HT acupuncture group. Hot-plate test and writhing response induced by acetic acid were used for investigating the different analgesic effect of acupuncture on HT and WT mice. Results There was no significant difference in the basic pain threshold value between HT and WT mice (P 〉0.05). Acupuncture could significantly increase the pain threshold value, prolong the latency period of writhing body and decrease the number of writhing body as compared with pre-acupuncture in WT and HT mice (P 〈 0.01 or P 〈 0.05). The pain threshold, latency period of writhing and number of writhing body in HT mice were less than WT mice post-acupuncture (P〈0.05). Conclusion Connexin 43 gene knock-out might partially inhibit the analgesic effect of acupuncture, suggesting that connexin 43 is possibly related with meridians and the effect of acupuncture.展开更多
The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scali...The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scaling effect of the LAI has always been of concern.Considering the effects of the clumping indices on the BRDF models of discrete canopies,an effective LAI is defined.The effective LAI has the same function of describing the leaf density as does the traditional LAI.Therefore,our study was based on the effective LAI.The spatial scaling effect of discrete canopies significantly differed from that of continuous canopies.Based on the directional second-derivative method of effective LAI retrieval,the mechanism responsible for the spatial scaling effect of the discrete-canopy LAI is discussed and a scaling transformation formula for the effective LAI is suggested in this paper.Theoretical analysis shows that the mean values of effective LAIs retrieved from high-resolution pixels were always equal to or larger than the effective LAIs retrieved from corresponding coarse-resolution pixels.Both the conclusions and the scaling transformation formula were validated with airborne hyperspectral remote sensing imagery obtained in Huailai County,Zhangjiakou,Hebei Province,China.The scaling transformation formula agreed well with the effective LAI retrieved from hyperspectral remote sensing imagery.展开更多
By turning a specifically designed conical part, complete process of metal cutting, in which the chatter occurs and expands, is recorded and analyzed. This process exposes that chatter vibration has two characters cal...By turning a specifically designed conical part, complete process of metal cutting, in which the chatter occurs and expands, is recorded and analyzed. This process exposes that chatter vibration has two characters called continuity and break. The continuity character means that vibration extent enlarges continuously while chatter frequency is almost changeless as the cutting depth extends downwards continuously. The break one is that chatter frequency moves rapidly downwards to a lower level while chatter remains after the cutting depth reach another given value. It is confirmed through an exciting test that the two chatter frequencies obtained in chatter test belong to the natural frequencies of workpiece system and cutting tool system respectively. From the viewpoints of chatter energy supplying and chatter mass effect, the. chatter should occur on one of the two final executive components in its natural frequency. On this basis, a new chatter model with two chatter active bodies is proposed. This new model can better explain the above phenomenon, and adapt to chatter monitoring and improvement of component structure well.展开更多
The unique chemical mechanical, and thermodynamic properties of nanofluids make them a subject of great interest for scientists from all domains. Such fluids are of particular significance in biomedical engineering ow...The unique chemical mechanical, and thermodynamic properties of nanofluids make them a subject of great interest for scientists from all domains. Such fluids are of particular significance in biomedical engineering owing to their vast and novel applications in modern drug delivery systems; for example, mixed convective peristaltic flow of water-based nanofluids under the influence of an externally applied magnetic field is of particular significance. Hence, a lot of research has focused on peristalsis in the presence of velocity and thermal slip effects. An empirical relation for the effective viscosity of the nanofluid is proposed here for the first time. The viscosity of the nanofluid varies with temperature and nanoparticle volume fraction. Numerical simulation of the resulting nonlinear system of equations is presented for different quantities of interest. The results indicate that the maximum velocity and temperature of the copper-water nanofluid increase for larger variable viscosity parameter. The pressure gradient in the wider part of the channel is also found to increase as a function of the variable viscosity parameter. The variable viscosity parameter also influences the size of the trapped bolus. An increase in the nanoparticle volume fraction reduces the reflux phenomenon in a peristaltic flow.展开更多
基金Supported by the Key Laboratory of Microsatellites,Chinese Academy of Sciences
文摘A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.
基金supported by the National Natural Science Foundation of China (52203066,51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’innovation and entrepreneurship training program (202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education (Grant No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.
基金funding support from the973 Program(2014CB440904)Chinese NSF projects(41225012,41490635,41530210)
文摘An anomalous isotope effect exists in many heavy element isotope systems (e.g., Sr, Gd, Zn, U). This effect used to be called the "odd--even isotope effect" because the odd mass number isotopes behave differently from the even mass number isotopes. This mass-indepen- dent isotope fractionation driving force, which originates from the difference in the ground-state electronic energies caused by differences in nuclear size and shape, is cur- rently denoted as the nuclear field shift effect (NFSE). It is found that the NFSE can drive isotope fractionation of some heavy elements (e.g., Hg, T1, U) to an astonishing degree, far more than the magnitude caused by the con- ventional mass-dependent effect (MDE). For light ele- ments, the MDE is the dominant factor in isotope fractionation, while the NFSE is neglectable. Furthermore, the MDE and the NFSE both decrease as temperatures increase, though at different rates. The MDE decreases rapidly with a factor of 1/T2, while the NFSE decreases slowly with a factor of 1/T. As a result, even at high temperatures, the NFSE is still significant for many heavy element isotope systems. In this review paper, we begin with an introduction of the basic concept of the NSFE, including its history and recent progress, and follow with the potential implications of the inclusion of the NFSE into the kinetic isotope fractionation effect (KIE) and heavy isotope geochronology.
基金Under the auspices of National Natural Science Foundation of China(No.41101039,41371068)
文摘The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.
基金Project supported by the Key Program of the National Natural Science Foundation of China(Grant No.60836004)the National Natural Science Foundation of China(Grant Nos.61006070 and 61076025)
文摘In this paper, a new method is proposed to study the mechanism of charge collection in single event transient (SET) production in 90 nm bulk complementary metal oxide semiconductor (CMOS) technology. We find that different from the case in the pMOSFET, the parasitic bipolar amplification effect (bipolar effect) in the balanced inverter does not exist in the nMOSFET after the ion striking. The influence of the suhstrate process on the bipolar effect is also studied in the pMOSFET. We find that the bipolar effect can be effectively mitigated by a buried deep P+-well layer and can be removed by a buried SO2 layer.
基金the support of the Smart Mix Program of The Netherlands Ministry of Economic Affairs, Agriculture and Innovation and The Netherlands Ministry of Education, Culture and Science (Grant no. 053.70.011)
文摘The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.
文摘Calcium modified lead titanate nanocrystal material Pb0.85Ca0.15TiO3 was synthesized by means of a solgel method.The changes of crystal structure and grainsize of the samples were investigated under different conditions of heat treatment.the results show that the tetragonal symmetry is reduced and the ferroelectricparaelectric phase transformation temperature is decreased with the reduce of the grainsize of the sample.the critical grainsize for the ferroelectricparaelectric phase transformation at room temperature was calculated.The change regularities of the lattice constant and tetragonality with the grainsize are discussed.
基金supported by the National Natural Science Foundation of China under Grant No. G050104011004024the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. A0901040110018512026
文摘Surface plasmon resonance of noble metal nanoparticles leads to the optical absorption enhancement effects,which have great potential applications in solar cell.By using the general numerical method of discrete dipole approximation (DDA),we study the absorption and scattering properties of two-dimensional square silver nanodisks (2D SSN) arrays on the single crystal silicon solar cell.Based on the effective reflective index model of the single crystal silicon solar cell,we investigate the optical enhancement absorption of light energy by varying the light incident direction,particle size,aspect ratio,and interparticle spacing of the silver nanodisks.The peak values and position of the optical extinction spectra of the 2D square arrays of noble metal nanodisks are obtained with the different array structures.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB921401)the National Natural Science Foundation of China(Grant Nos.51331002,51371027,51431009,51471183,and 11274371)+1 种基金the National Instrumentation Program of China(Grant No.2012YQ120048)the Instrument Development Program of Chinese Academy of Sciences(Grant No.YZ201345)
文摘The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current,respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11327404 and U1432118)the Natural Science Research Programme of Education Department of Anhui Province,China(Grant Nos.KJ2013A260 and KJ2016A749)
文摘The relativistic and distorted wave effects are investigated for the electron momentum distributions of Xe 4d electrons.The theoretical results show good agreements with the experimental data measured previously with electron momentum spectroscopy. The distorted wave effect and the relativistic effect are found to play important roles in the low and high momentum regions, respectively.
基金Project supported by the Foundation of Education Department of Shaanxi Province,China(Grant No.16JK1402)
文摘The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604019,61574020,and 61376018)the Ministry of Science and Technology of China(Grant No.2016YFA0301300)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.2016RCGD22)
文摘Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures.
基金Project supported by the Weapon Equipment Pre-Research Foundation of China(Grant No.9140A11020114ZK34147)the Shanghai Municipal Natural Science Foundation,China(Grant No.15ZR1447100)
文摘Total ionizing dose responses of different transistor geometries after being irradiated by ^(60)Co γ-rays, in 0.13-μm partially-depleted silicon-on-insulator(PD SOI) technology are investigated. The negative threshold voltage shift in an n-type metal-oxide semiconductor field effect transistor(nMOSFET) is inversely proportional to the channel width due to radiation-induced charges trapped in trench oxide, which is called the radiation-induced narrow channel effect(RINCE).The analysis based on a charge sharing model and three-dimensional technology computer aided design(TCAD) simulations demonstrate that phenomenon. The radiation-induced leakage currents under different drain biases are also discussed in detail.
基金supported by the Key Research and Development Program of Hebei Province[20326333D]Science and Technology Promotion Demonstration Project of forestry and grassland in Hebei Province[Hebei TG[2019]001]Science and Technology Promotion Demonstration Project of forestry and grassland in Hebei Province[Hebei TG[2020]013]。
文摘Larix gmelinii var.principis-rupprechtii(Mayr.)Pilger is an important native tree species in North China with advantages of fast growth,straight trunk,and good wood properties.The multi-year and multi-site breeding research of families of the species has not been reported previously.Based on diameter at breast height(DBH),height and volume of 25 families on four experimental sites,we calculated variance components,genetic parameters,juvenile and mature trait correlations and made genotype main effect plus genotype×environment interaction effect(GGE)biplot based on the breeding values estimated using the method of best linear unbiased prediction(BLUP).Compared with height,DBH and volume had higher heritability and larger variation coefficients,making them the more suitable traits for family selection and evaluation.Based on these,GGE biplots containing 20 combinations of site×age were drawn using data at 13 to 17 years when the interactions between family and location were strong.Test sites classifications based on DBH,and volume were inconsistent,with two categories for DBH and one for volume.The Guyuan site was the most suitable with strong discriminating ability,high representativeness and stability among tree ages.Integrating the ranking results of DBH and volume,families 66,76,82 and 111 were high-yielding and stable,families 78 and96 were high-yielding with above average stability,families72 and 79 were high-yielding with below average stability,whereas stability of family 100 was inconsistent between DBH and volume.Early selection based on DBH was convenient and reliable,and can be made at seven years.This study provides support for the selection of Larix gmelinii var.principis-rupprechtii families in Hebei province and an example for the application of stem analysis data from multiple sites in tree breeding.
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)
文摘This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.
基金Project supported by the Council of Scientific&Industrial Research(CSIR),Government of India under the SRF Scheme(Sanction Letter No:08/237(0005)/2012-EMR-I)
文摘We propose a scaling theory for single gate Al In Sb/In Sb high electron mobility transistors(HEMTs) by solving the two-dimensional(2D) Poisson equation. In our model, the effective conductive path effect(ECPE) is taken into account to overcome the problems arising from the device scaling. The potential in the effective conducting path is developed and a simple scaling equation is derived. This equation is solved to obtain the minimum channel potential Φdeff,minand the new scaling factor α to model the subthreshold behavior of the HEMTs. The developed model minimizes the leakage current and improves the subthreshold swing degradation of the HEMTs. The results of the analytical model are verified by numerical simulation with a Sentaurus TCAD device simulator.
文摘Objective To and connexin 43. Methods investigate the possible relationship between the analgesic effect of acupuncture Connexin 43 gene knock-out mice were randomly divided into 4 groups: a wide type (WT) control group, a WT acupuncture group, a heterozygous (HT) control group and HT acupuncture group. Hot-plate test and writhing response induced by acetic acid were used for investigating the different analgesic effect of acupuncture on HT and WT mice. Results There was no significant difference in the basic pain threshold value between HT and WT mice (P 〉0.05). Acupuncture could significantly increase the pain threshold value, prolong the latency period of writhing body and decrease the number of writhing body as compared with pre-acupuncture in WT and HT mice (P 〈 0.01 or P 〈 0.05). The pain threshold, latency period of writhing and number of writhing body in HT mice were less than WT mice post-acupuncture (P〈0.05). Conclusion Connexin 43 gene knock-out might partially inhibit the analgesic effect of acupuncture, suggesting that connexin 43 is possibly related with meridians and the effect of acupuncture.
基金supported by the National Natural Science Foundation of China(Grant Nos.91025006,40871186,40730525)National Basic Research Program of China(Grant No.2007CB714402)National High Technology Research and Development Program of China(Grant Nos.2009AA12Z143,2009AA122103)
文摘The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scaling effect of the LAI has always been of concern.Considering the effects of the clumping indices on the BRDF models of discrete canopies,an effective LAI is defined.The effective LAI has the same function of describing the leaf density as does the traditional LAI.Therefore,our study was based on the effective LAI.The spatial scaling effect of discrete canopies significantly differed from that of continuous canopies.Based on the directional second-derivative method of effective LAI retrieval,the mechanism responsible for the spatial scaling effect of the discrete-canopy LAI is discussed and a scaling transformation formula for the effective LAI is suggested in this paper.Theoretical analysis shows that the mean values of effective LAIs retrieved from high-resolution pixels were always equal to or larger than the effective LAIs retrieved from corresponding coarse-resolution pixels.Both the conclusions and the scaling transformation formula were validated with airborne hyperspectral remote sensing imagery obtained in Huailai County,Zhangjiakou,Hebei Province,China.The scaling transformation formula agreed well with the effective LAI retrieved from hyperspectral remote sensing imagery.
基金National Natural Science Foundation of China(No, 50575232).
文摘By turning a specifically designed conical part, complete process of metal cutting, in which the chatter occurs and expands, is recorded and analyzed. This process exposes that chatter vibration has two characters called continuity and break. The continuity character means that vibration extent enlarges continuously while chatter frequency is almost changeless as the cutting depth extends downwards continuously. The break one is that chatter frequency moves rapidly downwards to a lower level while chatter remains after the cutting depth reach another given value. It is confirmed through an exciting test that the two chatter frequencies obtained in chatter test belong to the natural frequencies of workpiece system and cutting tool system respectively. From the viewpoints of chatter energy supplying and chatter mass effect, the. chatter should occur on one of the two final executive components in its natural frequency. On this basis, a new chatter model with two chatter active bodies is proposed. This new model can better explain the above phenomenon, and adapt to chatter monitoring and improvement of component structure well.
文摘The unique chemical mechanical, and thermodynamic properties of nanofluids make them a subject of great interest for scientists from all domains. Such fluids are of particular significance in biomedical engineering owing to their vast and novel applications in modern drug delivery systems; for example, mixed convective peristaltic flow of water-based nanofluids under the influence of an externally applied magnetic field is of particular significance. Hence, a lot of research has focused on peristalsis in the presence of velocity and thermal slip effects. An empirical relation for the effective viscosity of the nanofluid is proposed here for the first time. The viscosity of the nanofluid varies with temperature and nanoparticle volume fraction. Numerical simulation of the resulting nonlinear system of equations is presented for different quantities of interest. The results indicate that the maximum velocity and temperature of the copper-water nanofluid increase for larger variable viscosity parameter. The pressure gradient in the wider part of the channel is also found to increase as a function of the variable viscosity parameter. The variable viscosity parameter also influences the size of the trapped bolus. An increase in the nanoparticle volume fraction reduces the reflux phenomenon in a peristaltic flow.