Electromagnetic wave-absorbing(EMA)materials at high temperatures are limited by poor conduction loss(L_(c)).However,adding conductors simultaneously increases the conduction loss and interfacial polarization loss,lea...Electromagnetic wave-absorbing(EMA)materials at high temperatures are limited by poor conduction loss(L_(c)).However,adding conductors simultaneously increases the conduction loss and interfacial polarization loss,leading to a conflict between impedance matching(Z_(in)/Z_(0))and electromagnetic wave loss.This will prevent electromagnetic waves from entering the EMA materials,finally reducing overall absorbing performance.Here,the effective electrical conductivity(σ)is enhanced by synchronizing particle size and grain number of Ti_(3)AlC_(2) to increase the conduction loss and avoid the conflict between the impedance matching and the electromagnetic wave loss.As a result,the best-absorbing performance with an effective absorption bandwidth(EAB)of 4.8 GHz(10.6–15.4 GHz)at a thickness of only 1.5 mm is realized,which is the best combination of wide absorption bandwidth and small thickness,and the minimum reflection loss(RL_(min))reaches−45.6 dB at 4.1 GHz.In short,this work explores the regulating mechanism of the EMA materials of effective electrical conductivity by simulated calculations using the Vienna ab-initio Simulation Package(VASP)and COMSOL as well as a series of experiments,which provide new insight into a rational design of materials with anisotropic electrical conductivity.展开更多
Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast...Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast ionic conductor.For a long time materialists and chemists have made great efforts in search of new fast ionic conductors with high ionic conductivity.In view of structure,they have synthesised silver and copper fast ionic conductors with so called open structures.But it is not so successful for searching more applicable alkaline fast ionic conductors.Since polymer has flexibility for making thin film,it concentrates attention on the polymer-alkaline salt complex.Fenton et al.have first reported poly(ethylene oxide) (PEO)-alkaline salt complex.Later on Armard et al.have investigated the electrical property of PEO-NaSCN.展开更多
文摘Electromagnetic wave-absorbing(EMA)materials at high temperatures are limited by poor conduction loss(L_(c)).However,adding conductors simultaneously increases the conduction loss and interfacial polarization loss,leading to a conflict between impedance matching(Z_(in)/Z_(0))and electromagnetic wave loss.This will prevent electromagnetic waves from entering the EMA materials,finally reducing overall absorbing performance.Here,the effective electrical conductivity(σ)is enhanced by synchronizing particle size and grain number of Ti_(3)AlC_(2) to increase the conduction loss and avoid the conflict between the impedance matching and the electromagnetic wave loss.As a result,the best-absorbing performance with an effective absorption bandwidth(EAB)of 4.8 GHz(10.6–15.4 GHz)at a thickness of only 1.5 mm is realized,which is the best combination of wide absorption bandwidth and small thickness,and the minimum reflection loss(RL_(min))reaches−45.6 dB at 4.1 GHz.In short,this work explores the regulating mechanism of the EMA materials of effective electrical conductivity by simulated calculations using the Vienna ab-initio Simulation Package(VASP)and COMSOL as well as a series of experiments,which provide new insight into a rational design of materials with anisotropic electrical conductivity.
文摘Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast ionic conductor.For a long time materialists and chemists have made great efforts in search of new fast ionic conductors with high ionic conductivity.In view of structure,they have synthesised silver and copper fast ionic conductors with so called open structures.But it is not so successful for searching more applicable alkaline fast ionic conductors.Since polymer has flexibility for making thin film,it concentrates attention on the polymer-alkaline salt complex.Fenton et al.have first reported poly(ethylene oxide) (PEO)-alkaline salt complex.Later on Armard et al.have investigated the electrical property of PEO-NaSCN.