The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of eff...Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of effective anisotropy constant K_(eff) on grain size was investigated. Calculation results reveal that the exchange-coupling interaction enhances and the effective anisotropy of material K_(eff) decreases with the reduction of grain size. The variation of K_(eff) is basically the same as that of coercivity. The decrease of effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline Nd_2Fe_(14)B permanent magnetic material.展开更多
X65, X70, and X80 belong to high grade pipeline steels. Toughness is one of the most important properties of pipeline steels when the pipeline transports the gas or oil, and the means to control toughness is very impo...X65, X70, and X80 belong to high grade pipeline steels. Toughness is one of the most important properties of pipeline steels when the pipeline transports the gas or oil, and the means to control toughness is very important for exploring even higher grade pipeline steels. We established the relationship between toughness and crystallographic parameters of high grade pipeline steels by studying the crystallographic parameters of X65, X70, and X80 using EBSD and analyzing Charpy CVN of X65, X70 and X80. The results show that the effective grain size, the frequency distribution of grain boundary misorientation and the ratio of high angle grain boundary to small angle grain boundary are important parameters. The finer the effective grain size, and the higher the frequency distribution of grain boundaries (〉 50~), the more excellent toughness of high grade pipeline steels will be.展开更多
Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect a...Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.展开更多
To examine spatial variations of grain-size characteristics caused by both natural and human-induced processes along the Lianyungang muddy coast, China, 129 samples were collected and measured using standard sieving a...To examine spatial variations of grain-size characteristics caused by both natural and human-induced processes along the Lianyungang muddy coast, China, 129 samples were collected and measured using standard sieving and sedimentation techniques. Results show that sediment diameter tends to increase with increasing water depth from nearshore to offshore. Size-frequency distributions indicate a gradual mixing process of coarse and fine diameter material. Grain size trend analysis indicates that a man-made structure, the West has resulted in severe siltation in Haizhou Bay and Breakwater, along with Liandao Island itself, the Lianyungang port area, where sediment quality is also poor. Results demonstrate that grain size can be used as a natural tracer to infer how sediments respond to the effects caused by both natural and human-induced processes.展开更多
In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 m...In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 mm in thickness and diverse grain sizes.The results show that,the decline ratio of elastic modulus is weakened with increasing grain size,and the Bauschinger effect becomes evident with decreasing grain size.Meanwhile,U-bending test results determine that the springback is diminished with increasing grain size.The Chaboche,Anisotropic Nonlinear Kinematic(ANK)and Yoshida-Uemori(Y-U)models were utilized to fit the shear stress-strain curves of specimens.It is found that Y-U model is sufficient of predicting the springback.However,the prediction accuracy is degraded with increasing grain size.展开更多
The influence of grain size and ordering degree of the parent phase on the shape memory re- covery in a Cu-25.62Zn-3.97Al-0.0018B(wt-%)memory alloy is investigated.A mathematical relationship is set up between the rec...The influence of grain size and ordering degree of the parent phase on the shape memory re- covery in a Cu-25.62Zn-3.97Al-0.0018B(wt-%)memory alloy is investigated.A mathematical relationship is set up between the recovery ratio and ordering degree,probabili- ty of atoms at their ordered sites,grain size,the thickness of the grain boundary affected re- gions,the stress during deformation,as well as the critical shear stress.Shape memory effect reaches a maximum with varying grain size and increases linearly with increasing ordering parameter,which agrees well with experimental results.展开更多
Polyploidization in plants often leads to increased cell size and grain size,which may be affected by the increased genome dosage and transcription abundance.The synthesized Triticum durum(AABB)-Hay-naldia villosa(WM)...Polyploidization in plants often leads to increased cell size and grain size,which may be affected by the increased genome dosage and transcription abundance.The synthesized Triticum durum(AABB)-Hay-naldia villosa(WM)amphiploid(AABBM)has significantly increased grain size,especially grain length,than the tetraploid and diploid parents.To investigate how polyploidization affects grain development at the transcriptional level,we perform transcriptome analysis using the immature seeds of T.durum,H.villosa,and the amphiploid.The dosage effect genes are contributed more by differentially expressed genes from genome V of H.villosa.The dosage effect genes overrepresent grain development-related genes.Inter-estingly,the vernalization gene TaVRN1 is among the positive dosage effect genes in the T.durum-H.villosa and T.turgidum-Ae.tauschii amphiploids.The expression levels of TaVRN1 homologs are positively correlated with the grain size and weight.The TaVRN1-B1 or TaVRN1-D1 mutation shows delayed florescence,decreased cell size,grain size,and grain yield.These data indicate that dosage effect genes could be one of the important explanations for increased grain size by regulating grain development.The identification and functional validation of dosage effect genes may facilitate the finding of valuable genes for improvingwheat yield.展开更多
Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with...Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes.展开更多
The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been ...The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been not yet mature.In this work,the phase field method was used to investigate the shape memory effects(SMEs)of NiTi SMAs undergoing grain size(GS)engineering,to obtain tunable one-way and stress-assisted two-way SMEs(OWSME and SATWSME).The OWSME and SATWSME of the systems with various gradient-nanograin structures and bimodal grain structure,as well as that with geometric gradients were simulated.The simulated results indicate that due to the GS dependences of martensite transformation and reorientation,the occurrence and expansion of martensite reorientation,martensite transformation and its reverse can be efficaciously controlled via the GS engineering.When combining the GS engineering and geometric gradient design,since the effects of GS and stress gradient can be su-perimposed or competing,and the responses of martensite reorientation,martensite transformation and its reverse to this are different,the OWSME and SATWSME of the geometrically graded systems with various nanograin structures can exhibit different improvements in controllability.In short,the reorienta-tion hardening modulus during OWSME is increased and the transformation temperature window during SATWSME is widened by GS engineering,indicating the improved controllability of SMEs.The optimal GS engineering schemes revealed in this work provide the basic reference and guidance for designing tun-able SMEs and producing NiTi-based driving devices catering to desired functional performance in various engineering fields.展开更多
The systematic investigation of the mechanical properties and microstructure evolution process of ultra-thin-walled Inconel 718 capillary brazing joints is of great significance because of the exceptionally high deman...The systematic investigation of the mechanical properties and microstructure evolution process of ultra-thin-walled Inconel 718 capillary brazing joints is of great significance because of the exceptionally high demands on its application.To achieve this objective,this study investigates the impact of three distinct brazing temperatures and five typical grain sizes on the brazed joints’mechanical properties and microstructure evolution process.Microstructural evolution analysis was conducted based on Electron Back Scatter Diffraction(EBSD),Scanning Electron Microscopy(SEM),X-Ray Diffraction(XRD),High-Resolution Transmission Electron Microscopy(HRTEM),and Focused Ion Beam(FIB).Besides,the mechanical properties and fracture behavior were studied based on the uniaxial tension tests and in-situ tension tests.The findings reveal that the brazing joint’s strength is higher for the fine-grain capillary than the coarse-grain one,primarily due to the formation of a dense branch structure composed of G-phase in the brazing seam.The effects of grain size,such as pinning and splitting,are amplified at higher brazing temperatures.Additionally,micro-cracks initiate around brittle intermetallic compounds and propagate through the eutectic zone,leading to a cleavage fracture mode.The fracture stress of fine-grain specimens is higher than that of coarse-grain due to the complex micro-crack path.Therefore,this study contributes significantly to the literature by highlighting the crucial impact of grain size on the brazing properties of ultra-thin-walled Inconel 718 structures.展开更多
A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally a...A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally analyze the micro-cyclic plastic response of polycrystals containing micron-sized grains, with special attentions to significant influence of dislocationpenetrable grain boundaries (GBs) on the micro-plastic cyclic responses of polycrystals and underlying dislocation mechanism. Toward this end, a typical polycrystalline rectangular specimen under simple tension-compression loading is considered. Results show that, with the increase of cycle accumulative strain, continual dislocation accumulation and enhanced dislocation-dislocation interactions induce the cyclic hardening behavior; however, when a dynamic balance among dislocation nucleation, penetration through GB and dislocation annihilation is approximately established, cyclic stress gradually tends to saturate. In addition, other factors, including the grain size, cyclic strain amplitude and its history, also have considerable influences on the cyclic hardening and saturation.展开更多
This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was...This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was investigated via tensile and micro-hardness tests.The results showed that different from thick sheets,the hardening behavior of grains in the deformation area of thin foils is not uniform.The flow stress of thin foils actually only reflects the average hardening behavior of several easy-deformation-grains,which is the reason that thinner foils own smaller flow stress.Then,a composite modeling method under consideration of individual grain heterogeneity was developed,where the effects of grain orientation and shape are quantitatively represented by the method of flow stress classification and Voronoi tessellation,respectively.This model provides an accurate and effective method to analyze the influence of individual grain heterogeneity on the deformation behavior of the micro-sized material.展开更多
To explore the specimen size effect of mechanical behavior of ultrafine-grained(UFG)materials with different structures,UFG Al sheets processed by equal channel angular pressing(ECAP)were selected as target materials ...To explore the specimen size effect of mechanical behavior of ultrafine-grained(UFG)materials with different structures,UFG Al sheets processed by equal channel angular pressing(ECAP)were selected as target materials and the dependency of tensile behavior on sheet thickness(t)was systematically investigated.The strength and ductility of ECAPed UFG Al sheets were improved synchronously as t increased from 0.2 to 0.7 mm,and then no apparent change occurred when t reached to 0.7 and 1.0 mm.The corresponding microstructure evolved from dislocation networks in equiaxed grains into the walls and subgrains and finally into the dominated cells in elongated grains or subgrains.Meanwhile,dense shear lines(SLs)and shear bands(SBs)were clearly observed and microvoids and cracks were initiated along SBs with the increase of t.These observations indicated that the plastic deformation of UFG Al sheets was jointly controlled by shear banding,dislocation sliding,and grain-boundary sliding.Furthermore,the propagation of SBs became difficult as t increased.Finally,the obtained results were discussed and compared with those of annealed UFG Al and UFG Cu.展开更多
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
基金Project supported by National‘863’Project (2002AA324050 2002AA302602) and Natural Science Foundation of China(50371046) and Doctoral Foundation of China (20040422014)
文摘Taking nanocrystalline Nd_2Fe_(14)B as a typical sample, based on Herzer′s random anisotropy theory and the cubic grain model, the partial exchange-coupling interaction model was established and the dependence of effective anisotropy constant K_(eff) on grain size was investigated. Calculation results reveal that the exchange-coupling interaction enhances and the effective anisotropy of material K_(eff) decreases with the reduction of grain size. The variation of K_(eff) is basically the same as that of coercivity. The decrease of effective anisotropy is the main reason of the reduction of coercivity for nanocrystalline Nd_2Fe_(14)B permanent magnetic material.
基金Funded by China Postdoctoral Science Foundation(No.20060390319)
文摘X65, X70, and X80 belong to high grade pipeline steels. Toughness is one of the most important properties of pipeline steels when the pipeline transports the gas or oil, and the means to control toughness is very important for exploring even higher grade pipeline steels. We established the relationship between toughness and crystallographic parameters of high grade pipeline steels by studying the crystallographic parameters of X65, X70, and X80 using EBSD and analyzing Charpy CVN of X65, X70 and X80. The results show that the effective grain size, the frequency distribution of grain boundary misorientation and the ratio of high angle grain boundary to small angle grain boundary are important parameters. The finer the effective grain size, and the higher the frequency distribution of grain boundaries (〉 50~), the more excellent toughness of high grade pipeline steels will be.
基金Project(51174235)supported by the National Natural Science Foundation of China
文摘Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.
基金Supported by the Natural Science Foundation of the Institutions of Higher Education of Jiangsu (No. 07KJD170012)
文摘To examine spatial variations of grain-size characteristics caused by both natural and human-induced processes along the Lianyungang muddy coast, China, 129 samples were collected and measured using standard sieving and sedimentation techniques. Results show that sediment diameter tends to increase with increasing water depth from nearshore to offshore. Size-frequency distributions indicate a gradual mixing process of coarse and fine diameter material. Grain size trend analysis indicates that a man-made structure, the West has resulted in severe siltation in Haizhou Bay and Breakwater, along with Liandao Island itself, the Lianyungang port area, where sediment quality is also poor. Results demonstrate that grain size can be used as a natural tracer to infer how sediments respond to the effects caused by both natural and human-induced processes.
基金the National Natural Science Foundation of China(Nos.51975031,52075023,51635005)Defense Industrial Technology Development Program,China(No.JCKY2018601C207)。
文摘In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 mm in thickness and diverse grain sizes.The results show that,the decline ratio of elastic modulus is weakened with increasing grain size,and the Bauschinger effect becomes evident with decreasing grain size.Meanwhile,U-bending test results determine that the springback is diminished with increasing grain size.The Chaboche,Anisotropic Nonlinear Kinematic(ANK)and Yoshida-Uemori(Y-U)models were utilized to fit the shear stress-strain curves of specimens.It is found that Y-U model is sufficient of predicting the springback.However,the prediction accuracy is degraded with increasing grain size.
文摘The influence of grain size and ordering degree of the parent phase on the shape memory re- covery in a Cu-25.62Zn-3.97Al-0.0018B(wt-%)memory alloy is investigated.A mathematical relationship is set up between the recovery ratio and ordering degree,probabili- ty of atoms at their ordered sites,grain size,the thickness of the grain boundary affected re- gions,the stress during deformation,as well as the critical shear stress.Shape memory effect reaches a maximum with varying grain size and increases linearly with increasing ordering parameter,which agrees well with experimental results.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2022YFF1002900 and 2020YFE0202900)the National Natural Science Foundation of China(32270576)+4 种基金Jiangsu Provincial Key Research and Development Program(BE2022346)Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]006 and JBGS[2021]013)the Jiangsu Agricultural Technology System(JATS[2023]422)the Joint Research of Wheat Variety Improvement of AnhuiZhongshan Biological Breeding Laboratory(ZSBBL)(ZSBBL-KY2023-02-2)。
文摘Polyploidization in plants often leads to increased cell size and grain size,which may be affected by the increased genome dosage and transcription abundance.The synthesized Triticum durum(AABB)-Hay-naldia villosa(WM)amphiploid(AABBM)has significantly increased grain size,especially grain length,than the tetraploid and diploid parents.To investigate how polyploidization affects grain development at the transcriptional level,we perform transcriptome analysis using the immature seeds of T.durum,H.villosa,and the amphiploid.The dosage effect genes are contributed more by differentially expressed genes from genome V of H.villosa.The dosage effect genes overrepresent grain development-related genes.Inter-estingly,the vernalization gene TaVRN1 is among the positive dosage effect genes in the T.durum-H.villosa and T.turgidum-Ae.tauschii amphiploids.The expression levels of TaVRN1 homologs are positively correlated with the grain size and weight.The TaVRN1-B1 or TaVRN1-D1 mutation shows delayed florescence,decreased cell size,grain size,and grain yield.These data indicate that dosage effect genes could be one of the important explanations for increased grain size by regulating grain development.The identification and functional validation of dosage effect genes may facilitate the finding of valuable genes for improvingwheat yield.
基金the financial support from National Natural Science Foundation of China (Grants Nos.12325203,91963117,and 11921002)。
文摘Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes.
基金The National Natural Science Foundation of China(12022208)the Project funded by China Postdoctoral Science Foundation(2022M712243)the Fundamental Research Funds for the Cen-tral Universities are acknowledged.
文摘The inelastic deformations of shape memory alloys(SMAs)always show poor controllability due to the avalanche-like martensite transformation,and the effective control for the deformation of precision de-vices has been not yet mature.In this work,the phase field method was used to investigate the shape memory effects(SMEs)of NiTi SMAs undergoing grain size(GS)engineering,to obtain tunable one-way and stress-assisted two-way SMEs(OWSME and SATWSME).The OWSME and SATWSME of the systems with various gradient-nanograin structures and bimodal grain structure,as well as that with geometric gradients were simulated.The simulated results indicate that due to the GS dependences of martensite transformation and reorientation,the occurrence and expansion of martensite reorientation,martensite transformation and its reverse can be efficaciously controlled via the GS engineering.When combining the GS engineering and geometric gradient design,since the effects of GS and stress gradient can be su-perimposed or competing,and the responses of martensite reorientation,martensite transformation and its reverse to this are different,the OWSME and SATWSME of the geometrically graded systems with various nanograin structures can exhibit different improvements in controllability.In short,the reorienta-tion hardening modulus during OWSME is increased and the transformation temperature window during SATWSME is widened by GS engineering,indicating the improved controllability of SMEs.The optimal GS engineering schemes revealed in this work provide the basic reference and guidance for designing tun-able SMEs and producing NiTi-based driving devices catering to desired functional performance in various engineering fields.
基金co-supported by the National Natural Science Foundation of China(No.52105316)the National Natural Foundation of Jiangxi,China(No.2021BAB214046)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.501LKQB2022107021)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.YESS20200397)。
文摘The systematic investigation of the mechanical properties and microstructure evolution process of ultra-thin-walled Inconel 718 capillary brazing joints is of great significance because of the exceptionally high demands on its application.To achieve this objective,this study investigates the impact of three distinct brazing temperatures and five typical grain sizes on the brazed joints’mechanical properties and microstructure evolution process.Microstructural evolution analysis was conducted based on Electron Back Scatter Diffraction(EBSD),Scanning Electron Microscopy(SEM),X-Ray Diffraction(XRD),High-Resolution Transmission Electron Microscopy(HRTEM),and Focused Ion Beam(FIB).Besides,the mechanical properties and fracture behavior were studied based on the uniaxial tension tests and in-situ tension tests.The findings reveal that the brazing joint’s strength is higher for the fine-grain capillary than the coarse-grain one,primarily due to the formation of a dense branch structure composed of G-phase in the brazing seam.The effects of grain size,such as pinning and splitting,are amplified at higher brazing temperatures.Additionally,micro-cracks initiate around brittle intermetallic compounds and propagate through the eutectic zone,leading to a cleavage fracture mode.The fracture stress of fine-grain specimens is higher than that of coarse-grain due to the complex micro-crack path.Therefore,this study contributes significantly to the literature by highlighting the crucial impact of grain size on the brazing properties of ultra-thin-walled Inconel 718 structures.
基金supported by the National Natural Science Foundation of China(No.10672064).
文摘A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally analyze the micro-cyclic plastic response of polycrystals containing micron-sized grains, with special attentions to significant influence of dislocationpenetrable grain boundaries (GBs) on the micro-plastic cyclic responses of polycrystals and underlying dislocation mechanism. Toward this end, a typical polycrystalline rectangular specimen under simple tension-compression loading is considered. Results show that, with the increase of cycle accumulative strain, continual dislocation accumulation and enhanced dislocation-dislocation interactions induce the cyclic hardening behavior; however, when a dynamic balance among dislocation nucleation, penetration through GB and dislocation annihilation is approximately established, cyclic stress gradually tends to saturate. In addition, other factors, including the grain size, cyclic strain amplitude and its history, also have considerable influences on the cyclic hardening and saturation.
基金financially supported by the National Natural Science Foundation of China(No.51365014)the Industrial Support Key Project of Jiangxi Province,China(No.20161BBE50072)
基金Project(51905362)supported by the National Natural Science Foundation of ChinaProjects(19KJB460022,18KJB130006)supported by the Natural Science Foundation of Jiangsu Higher Education Institution,China。
文摘This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was investigated via tensile and micro-hardness tests.The results showed that different from thick sheets,the hardening behavior of grains in the deformation area of thin foils is not uniform.The flow stress of thin foils actually only reflects the average hardening behavior of several easy-deformation-grains,which is the reason that thinner foils own smaller flow stress.Then,a composite modeling method under consideration of individual grain heterogeneity was developed,where the effects of grain orientation and shape are quantitatively represented by the method of flow stress classification and Voronoi tessellation,respectively.This model provides an accurate and effective method to analyze the influence of individual grain heterogeneity on the deformation behavior of the micro-sized material.
基金financially supported by the National Natural Science Foundation of China (Nos. 51571058 and 51871048)the Open Foundation of Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, China (No. ATM20170001)
文摘To explore the specimen size effect of mechanical behavior of ultrafine-grained(UFG)materials with different structures,UFG Al sheets processed by equal channel angular pressing(ECAP)were selected as target materials and the dependency of tensile behavior on sheet thickness(t)was systematically investigated.The strength and ductility of ECAPed UFG Al sheets were improved synchronously as t increased from 0.2 to 0.7 mm,and then no apparent change occurred when t reached to 0.7 and 1.0 mm.The corresponding microstructure evolved from dislocation networks in equiaxed grains into the walls and subgrains and finally into the dominated cells in elongated grains or subgrains.Meanwhile,dense shear lines(SLs)and shear bands(SBs)were clearly observed and microvoids and cracks were initiated along SBs with the increase of t.These observations indicated that the plastic deformation of UFG Al sheets was jointly controlled by shear banding,dislocation sliding,and grain-boundary sliding.Furthermore,the propagation of SBs became difficult as t increased.Finally,the obtained results were discussed and compared with those of annealed UFG Al and UFG Cu.