The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.Th...Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.The problem is tackled through a set of partial differential equations accounting for Magnetohydrodynamics(MHD),radiation and Joule heating effects,which are converted into a set of equivalent ordinary differential equations through a similarity transformation.The converted problem is solved in MATLAB in the framework a fourth order accurate integration scheme.It is found that the thermal relaxation period is inversely proportional to the thickness of the thermal boundary layer,whereas the Eckert-number displays the opposite trend.As this characteristic number grows,the temperature within the channel increases.展开更多
Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current...Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.展开更多
To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post ...To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post anneal. The ID- VG characteristics can be tested with the pseudo-MOSFET method before and after radiation. The results show that a proper Si-ion-implantation method can enhance the total-dose radiation tolerance of the materials.展开更多
With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution,...With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution, after air, water, and noise.展开更多
In order to explore the train of thought for China’s urbanizing development and coordinated rural economic development, and to find good ways of solving rural problems through urbanization, this paper absorbs the pus...In order to explore the train of thought for China’s urbanizing development and coordinated rural economic development, and to find good ways of solving rural problems through urbanization, this paper absorbs the push-and-pull forces theory and the systematic dynamic theory in the traditional population migration theories, views urbanization as a dynamic system, makes research on the push-and-pull mechanism of urbanization. The pulling power of urbanization is analyzed according to two aspects, the agglomeration effect and the radiation effect of cities. The agglomeration effect provides continuous propelling force for urbanization, and the radiation effect further accelerates the urbanization process by pushing forward the development of rural economy. Of course, the slow development of urbanization can result in the hindrance to rural economic development.展开更多
The characteristic degradations in silicon NPN bipolar junction transistors(BJTs) of type 3DD155 are examined under the irradiations of 25-MeV carbon(C),40-MeV silicon(Si),and 40-MeV chlorine(Cl) ions respecti...The characteristic degradations in silicon NPN bipolar junction transistors(BJTs) of type 3DD155 are examined under the irradiations of 25-MeV carbon(C),40-MeV silicon(Si),and 40-MeV chlorine(Cl) ions respectively.Different electrical parameters are measured in-situ during the exposure of heavy ions.The experimental data shows that the changes in the reciprocal of the gain variation((1/β)) of 3DD155 transistors irradiated respectively by 25-MeV C,40-MeV Si,and 40-MeV Cl ions each present a nonlinear behaviour at a low fluence and a linear response at a high fluence.The(1/β) of 3DD155 BJT irradiated by 25-MeV C ions is greatest at a given fluence,a little smaller when the device is irradiated by 40-MeV Si ions,and smallest in the case of the 40-MeV Cl ions irradiation.The measured and calculated results clearly show that the range of heavy ions in the base region of BJT affects the level of radiation damage.展开更多
Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work comb...Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.展开更多
It is first reported in the present paper that whole-body irradiation (WBI) with low dose X-rays could increase intracellular calcium ions ([Ca2+]i) and stimulate protein kinase C (PKC) activity of mouse lymphocytes. ...It is first reported in the present paper that whole-body irradiation (WBI) with low dose X-rays could increase intracellular calcium ions ([Ca2+]i) and stimulate protein kinase C (PKC) activity of mouse lymphocytes. Following WBI of male Kunming micc With 75 mGy X-rays at a dose rate of 12.5 mGy/min the mobilization of [Ca2+]i with Con A in CD4+ and CD8+ Cells in the thymus and spleen was potentiated and the amplitude of [Ca2+], mobilization in thymocytes in response to anti-CD3 monoclonal antibody increased with time from 4 to 24 h following low dose radiation. The PKC activity in the homogenate of spleen was markedly stimulated 12 h after WBl with 75 mGy, reaching its peak value at 24-48 h and coming down to lower than normal on day 7. However, the PKC activity in the separated T lymphocytes reached its peak value at 12 h and that in the B lymphocytes reached its peak value on day 4, both coming down to below control on day 7. The implications of this facilitation of signal transduction in T lymphocytes in the mechanism of immunoenhancement after low dose radiation were discussed展开更多
The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric soluti...The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric solutions.For the first time,the properties of fixed points in electron phase-space were analyzed with linear stability theory,showing that center nodes will become attractors if the classical radiation reaction is considered.Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to be increasing exponentially near the attractors.The density growth rates are derived theoretically and further verified by particle-in-cell sim-ulations,which can be detected in experiments to explore the effects of radiation reaction qualitatively.The attractor can also facilitate realizing a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.展开更多
This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The lea...This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The leakage current, threshold voltage shift, and transconductance of the devices were monitored before and after γ-ray irradiation. The parameters of the devices with different layout under different bias condition during irradiation at different total dose are investigated. The results show that the enclosed layout not only effectively eliminates the leakage but also improves the performance of threshold voltage and transconductance for NMOS (n-type channel MOS) transistors. The experimental results also indicate that analogue bias during irradiation is the worst case for enclosed gate NMOS. There is no evident different behaviour observed between normal PMOS (p-type channel MOS) transistors and enclosed gate PMOS transistors.展开更多
To gain a physical insight into the radiation effect on nanowires(NWs), the time resolved photoluminescence(TRPL)technique is used to investigate the carrier dynamic behaviors in GaAs/AlGaAs core–shell NWs before...To gain a physical insight into the radiation effect on nanowires(NWs), the time resolved photoluminescence(TRPL)technique is used to investigate the carrier dynamic behaviors in GaAs/AlGaAs core–shell NWs before and after 1-MeV proton irradiation with fluences ranging from 1.0 × 10^(12) cm^(-2) to 3.0 × 10^(13) cm^(-2). It is found that the degradations of spectral peak intensity and minority carrier lifetime show similar trends against irradiation fluence, which is closely related to the displacement defects induced by irradiation. We also find that the proton irradiation-induced defects behave as Shockley–Read–Hall(SRH) recombination center trapping free carriers. Finally, the defect concentration could be estimated through measuring the minority carrier lifetime.展开更多
The characteristic degradations in a silicon NPN bipolar junction transistor (BJT) of 3DG142 type are examined under irradiation with 40-MeV chlorine (C1) ions under forward, grounded, and reverse bias conditions,...The characteristic degradations in a silicon NPN bipolar junction transistor (BJT) of 3DG142 type are examined under irradiation with 40-MeV chlorine (C1) ions under forward, grounded, and reverse bias conditions, respectively. Different electrical parameters are in-situ measured during the exposure under each bias condition. From the experimental data, a larger variation of base current (IB) is observed after irradiation at a given value of base-emitter voJtage (VBE), while the collector current is slightly affected by irradiation at a given VBE. The gain degradation is affected mostly by the behaviour of the base current. From the experimental data, the variation of current gain in the case of forward bias is much smaller than that in the other conditions. Moreover, for 3DG142 BJT, the current gain degradation in the case of reverse bias is more severe than that in the grounded case at low fluence, while at high fluence, the gain degradation in the reverse bias case becomes smaller than that in the grounded case.展开更多
Based on the laboratory experiments this paper presented that the primary influence factors about the electromagnetic radiation during rock fracture are the rock mechanics characters and mineral components. The brittl...Based on the laboratory experiments this paper presented that the primary influence factors about the electromagnetic radiation during rock fracture are the rock mechanics characters and mineral components. The brittle samples and samples contained quartz, pyrite, chalopyrite produce electromagnetic radiation easily. There are three fracture radiation effects. The crystal fracture effect produces the high frequency electromagnetic signals, the piezoelectric effect produces low frequency signals and the natural semiconductor effect produces middle frequency signals possessed distinct wave shapes.展开更多
We irradiated pea seeds with neutrons from a ^(252)Cf source and studied the radiation dose effects on various morphological development parameters during the growth of M_(1) generation peas.We found that in the dose ...We irradiated pea seeds with neutrons from a ^(252)Cf source and studied the radiation dose effects on various morphological development parameters during the growth of M_(1) generation peas.We found that in the dose range of 0.51-9.27 Gy,with the increase in neutron-absorbed dose,the morphological development parameters of M_(1) generation peas at the initial seedling stage showed an obvious trend with three fluctuations.With the development of pea,this trend gradually weakened.Further analysis and verification showed that the main trend in the M_(1) generation of pea seeds was an inhibitory effect induced by neutron irradiation and there was a good linear correlation between the inhibitory effect and neutron absorption dose We successfully demonstrated the background removal of mutant plants and defined morphological developmen parameters for peas that match the overall development of plants.Our results will positively impact neutron mutation breeding and automatic agriculture.展开更多
Human lymphocytes pre-exposed to 10 mGy or 50 mGy of X-rays become less sensitive to subsequent large dose irradiation, exhibited lower rate of chromosome aberration than expected. This adaptive response could be inhi...Human lymphocytes pre-exposed to 10 mGy or 50 mGy of X-rays become less sensitive to subsequent large dose irradiation, exhibited lower rate of chromosome aberration than expected. This adaptive response could be inhibited by cycloheximide, a protein synthesis inhibitor for successive 2 h period ranging from 0.5h before to 4h after the low dose exposure, indicating that the adaptive response was directly related with the protein synthesis.展开更多
A reconstruction method is proposed for the polyurethane foam and then a complete numerical method is developed to predict the effective thermal conductivity of the polyurethane foam. The finite volume method is appli...A reconstruction method is proposed for the polyurethane foam and then a complete numerical method is developed to predict the effective thermal conductivity of the polyurethane foam. The finite volume method is applied to solve the 2D heterogeneous pure conduction. The lattice Boltzmann method is adopted to solve the 1D homogenous radiative transfer equation rather than Rosseland approximation equation. The lattice Boltzmann method is then adopted to solve 1D homogeneous conduction-radiation energy transport equation considering the combined effect of conduction and radiation. To validate the accuracy of the present method, the hot disk method is adopted to measure the effective thermal conductivity of the polyurethane foams at different temperature. The numerical results agree well with the experimental data. Then, the influences of temperature, porosity and cell size on the effective thermal conductivity of the polyurethane foam are investigated. The results show that the effective thermal conductivity of the polyurethane foams increases with temperature; and the effective thermal conductivity of the polyurethane foams decreases with increasing porosity while increases with the cell size.展开更多
AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decre...AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decreased.The threshold voltage shifted positively by approximately 25%and the saturation currents decreased by approximately 14%.Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites,which increased the gate current tunneling probability.According to the pulsed output characteristics,the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation.The time constants of the induced surface traps were mainly less than 10μs.展开更多
Two complementary types NPN and PNP of bipolar junction transistors (BJTs) were exposed to higll dose of neutrons and gamma rays. The change in the base and collector currents, minority carriers lifetime, and curren...Two complementary types NPN and PNP of bipolar junction transistors (BJTs) were exposed to higll dose of neutrons and gamma rays. The change in the base and collector currents, minority carriers lifetime, and current gain factor/3 with respect to the dose were analyzed. The contributions of the base current according to the defect types were also reported. It was declared that the radiation effect of neutrons was almost similar between the two transistor types, this effect at high dose may decrease the value of/3 to less than one. The Messenger-Spratt equation was used to describe the experimental results in this case. However, the experimental data demonstrated that the effect of gamma rays was generally higher on NPN than PNP transistors. This is mainly attributed to the difference in the behavior of the trapped positive charges in the SiO2 layers. Meanwhile, this difference tends to be small for high gamma dose.展开更多
We demonstrate that the GaAs/AlGaAs nanowires(NWs) ensemble is fabricated into photo-detectors. Current–voltage(I–V) characteristics are measured on Ga As/Al Ga As core–shell ensemble NW photo-detectors at room...We demonstrate that the GaAs/AlGaAs nanowires(NWs) ensemble is fabricated into photo-detectors. Current–voltage(I–V) characteristics are measured on Ga As/Al Ga As core–shell ensemble NW photo-detectors at room-temperature before and after 1-MeV proton irradiation with fluences from 1.0 × 10^(13) cm^(-2) to 5.0 × 10^(14) cm^(-2). The degradation of photocurrent suggests that the point defects induced by proton radiation could cause both carrier lifetime and carrier mobility to decrease synchronously. Comparing with a GaAs quantum well, the degradations of light and dark current for the irradiated NWs photo-detector indicate that NWs material is a preferable potential candidate for space applications.展开更多
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
文摘Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered.As the sheet is stretched in the x direction,the flow develops in the region with y>0.The problem is tackled through a set of partial differential equations accounting for Magnetohydrodynamics(MHD),radiation and Joule heating effects,which are converted into a set of equivalent ordinary differential equations through a similarity transformation.The converted problem is solved in MATLAB in the framework a fourth order accurate integration scheme.It is found that the thermal relaxation period is inversely proportional to the thickness of the thermal boundary layer,whereas the Eckert-number displays the opposite trend.As this characteristic number grows,the temperature within the channel increases.
文摘Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.
文摘To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post anneal. The ID- VG characteristics can be tested with the pseudo-MOSFET method before and after radiation. The results show that a proper Si-ion-implantation method can enhance the total-dose radiation tolerance of the materials.
基金supported by the National Natural Science Foundation of China[No.31570847]
文摘With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution, after air, water, and noise.
文摘In order to explore the train of thought for China’s urbanizing development and coordinated rural economic development, and to find good ways of solving rural problems through urbanization, this paper absorbs the push-and-pull forces theory and the systematic dynamic theory in the traditional population migration theories, views urbanization as a dynamic system, makes research on the push-and-pull mechanism of urbanization. The pulling power of urbanization is analyzed according to two aspects, the agglomeration effect and the radiation effect of cities. The agglomeration effect provides continuous propelling force for urbanization, and the radiation effect further accelerates the urbanization process by pushing forward the development of rural economy. Of course, the slow development of urbanization can result in the hindrance to rural economic development.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. HIT.KLOF.2010003)the National Basis Research Program of China (Grant No. 51320)
文摘The characteristic degradations in silicon NPN bipolar junction transistors(BJTs) of type 3DD155 are examined under the irradiations of 25-MeV carbon(C),40-MeV silicon(Si),and 40-MeV chlorine(Cl) ions respectively.Different electrical parameters are measured in-situ during the exposure of heavy ions.The experimental data shows that the changes in the reciprocal of the gain variation((1/β)) of 3DD155 transistors irradiated respectively by 25-MeV C,40-MeV Si,and 40-MeV Cl ions each present a nonlinear behaviour at a low fluence and a linear response at a high fluence.The(1/β) of 3DD155 BJT irradiated by 25-MeV C ions is greatest at a given fluence,a little smaller when the device is irradiated by 40-MeV Si ions,and smallest in the case of the 40-MeV Cl ions irradiation.The measured and calculated results clearly show that the range of heavy ions in the base region of BJT affects the level of radiation damage.
基金This work was financially supported by the National Natural Science Foundation of China(No.61704189)the Common Information System Equipment Pre-Research Special Technology Project(31513020404-2)Youth Innovation Promotion Association of Chinese Academy of Sciences and the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,and the Key Research Program of Frontier Sciences,CAS(Grant ZDBS-LY-JSC015)。
文摘Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.
文摘It is first reported in the present paper that whole-body irradiation (WBI) with low dose X-rays could increase intracellular calcium ions ([Ca2+]i) and stimulate protein kinase C (PKC) activity of mouse lymphocytes. Following WBI of male Kunming micc With 75 mGy X-rays at a dose rate of 12.5 mGy/min the mobilization of [Ca2+]i with Con A in CD4+ and CD8+ Cells in the thymus and spleen was potentiated and the amplitude of [Ca2+], mobilization in thymocytes in response to anti-CD3 monoclonal antibody increased with time from 4 to 24 h following low dose radiation. The PKC activity in the homogenate of spleen was markedly stimulated 12 h after WBl with 75 mGy, reaching its peak value at 24-48 h and coming down to lower than normal on day 7. However, the PKC activity in the separated T lymphocytes reached its peak value at 12 h and that in the B lymphocytes reached its peak value on day 4, both coming down to below control on day 7. The implications of this facilitation of signal transduction in T lymphocytes in the mechanism of immunoenhancement after low dose radiation were discussed
基金The work has been supported by the National Basic Research Program of China(Grant No.2013CBA01502),NSFC(Grant No.11535001)National Grand Instrument Project(2012YQ030142).
文摘The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric solutions.For the first time,the properties of fixed points in electron phase-space were analyzed with linear stability theory,showing that center nodes will become attractors if the classical radiation reaction is considered.Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to be increasing exponentially near the attractors.The density growth rates are derived theoretically and further verified by particle-in-cell sim-ulations,which can be detected in experiments to explore the effects of radiation reaction qualitatively.The attractor can also facilitate realizing a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.
基金Project supported by the National Natural Science Foundation of China (Grant No 6037202/F010204).
文摘This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The leakage current, threshold voltage shift, and transconductance of the devices were monitored before and after γ-ray irradiation. The parameters of the devices with different layout under different bias condition during irradiation at different total dose are investigated. The results show that the enclosed layout not only effectively eliminates the leakage but also improves the performance of threshold voltage and transconductance for NMOS (n-type channel MOS) transistors. The experimental results also indicate that analogue bias during irradiation is the worst case for enclosed gate NMOS. There is no evident different behaviour observed between normal PMOS (p-type channel MOS) transistors and enclosed gate PMOS transistors.
文摘To gain a physical insight into the radiation effect on nanowires(NWs), the time resolved photoluminescence(TRPL)technique is used to investigate the carrier dynamic behaviors in GaAs/AlGaAs core–shell NWs before and after 1-MeV proton irradiation with fluences ranging from 1.0 × 10^(12) cm^(-2) to 3.0 × 10^(13) cm^(-2). It is found that the degradations of spectral peak intensity and minority carrier lifetime show similar trends against irradiation fluence, which is closely related to the displacement defects induced by irradiation. We also find that the proton irradiation-induced defects behave as Shockley–Read–Hall(SRH) recombination center trapping free carriers. Finally, the defect concentration could be estimated through measuring the minority carrier lifetime.
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No. HIT.KLOF.2010003)the National Basis Research Foundation of China (Grant No. 51320)
文摘The characteristic degradations in a silicon NPN bipolar junction transistor (BJT) of 3DG142 type are examined under irradiation with 40-MeV chlorine (C1) ions under forward, grounded, and reverse bias conditions, respectively. Different electrical parameters are in-situ measured during the exposure under each bias condition. From the experimental data, a larger variation of base current (IB) is observed after irradiation at a given value of base-emitter voJtage (VBE), while the collector current is slightly affected by irradiation at a given VBE. The gain degradation is affected mostly by the behaviour of the base current. From the experimental data, the variation of current gain in the case of forward bias is much smaller than that in the other conditions. Moreover, for 3DG142 BJT, the current gain degradation in the case of reverse bias is more severe than that in the grounded case at low fluence, while at high fluence, the gain degradation in the reverse bias case becomes smaller than that in the grounded case.
文摘Based on the laboratory experiments this paper presented that the primary influence factors about the electromagnetic radiation during rock fracture are the rock mechanics characters and mineral components. The brittle samples and samples contained quartz, pyrite, chalopyrite produce electromagnetic radiation easily. There are three fracture radiation effects. The crystal fracture effect produces the high frequency electromagnetic signals, the piezoelectric effect produces low frequency signals and the natural semiconductor effect produces middle frequency signals possessed distinct wave shapes.
基金supported by the National Natural Science Foundation of China(Nos.11675069 and 12075106)the Natural Science Foundation of Gansu Province(No.20JR10RA607)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2020-kb09)。
文摘We irradiated pea seeds with neutrons from a ^(252)Cf source and studied the radiation dose effects on various morphological development parameters during the growth of M_(1) generation peas.We found that in the dose range of 0.51-9.27 Gy,with the increase in neutron-absorbed dose,the morphological development parameters of M_(1) generation peas at the initial seedling stage showed an obvious trend with three fluctuations.With the development of pea,this trend gradually weakened.Further analysis and verification showed that the main trend in the M_(1) generation of pea seeds was an inhibitory effect induced by neutron irradiation and there was a good linear correlation between the inhibitory effect and neutron absorption dose We successfully demonstrated the background removal of mutant plants and defined morphological developmen parameters for peas that match the overall development of plants.Our results will positively impact neutron mutation breeding and automatic agriculture.
文摘Human lymphocytes pre-exposed to 10 mGy or 50 mGy of X-rays become less sensitive to subsequent large dose irradiation, exhibited lower rate of chromosome aberration than expected. This adaptive response could be inhibited by cycloheximide, a protein synthesis inhibitor for successive 2 h period ranging from 0.5h before to 4h after the low dose exposure, indicating that the adaptive response was directly related with the protein synthesis.
基金Funded by Key Project of International Joint Research of National Natural Science Foundation of China(No.51320105004)
文摘A reconstruction method is proposed for the polyurethane foam and then a complete numerical method is developed to predict the effective thermal conductivity of the polyurethane foam. The finite volume method is applied to solve the 2D heterogeneous pure conduction. The lattice Boltzmann method is adopted to solve the 1D homogenous radiative transfer equation rather than Rosseland approximation equation. The lattice Boltzmann method is then adopted to solve 1D homogeneous conduction-radiation energy transport equation considering the combined effect of conduction and radiation. To validate the accuracy of the present method, the hot disk method is adopted to measure the effective thermal conductivity of the polyurethane foams at different temperature. The numerical results agree well with the experimental data. Then, the influences of temperature, porosity and cell size on the effective thermal conductivity of the polyurethane foam are investigated. The results show that the effective thermal conductivity of the polyurethane foams increases with temperature; and the effective thermal conductivity of the polyurethane foams decreases with increasing porosity while increases with the cell size.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019 and 11690042)Science Challenge Projects(Grant No.TZ2018004)。
文摘AlGaN/GaN high electron mobility transistors(HEMTs)were irradiated with heavy ions at various fluences.After irradiation by 2.1 GeV^(181) Ta^(32+) ions,the electrical characteristics of the devices significantly decreased.The threshold voltage shifted positively by approximately 25%and the saturation currents decreased by approximately 14%.Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites,which increased the gate current tunneling probability.According to the pulsed output characteristics,the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation.The time constants of the induced surface traps were mainly less than 10μs.
文摘Two complementary types NPN and PNP of bipolar junction transistors (BJTs) were exposed to higll dose of neutrons and gamma rays. The change in the base and collector currents, minority carriers lifetime, and current gain factor/3 with respect to the dose were analyzed. The contributions of the base current according to the defect types were also reported. It was declared that the radiation effect of neutrons was almost similar between the two transistor types, this effect at high dose may decrease the value of/3 to less than one. The Messenger-Spratt equation was used to describe the experimental results in this case. However, the experimental data demonstrated that the effect of gamma rays was generally higher on NPN than PNP transistors. This is mainly attributed to the difference in the behavior of the trapped positive charges in the SiO2 layers. Meanwhile, this difference tends to be small for high gamma dose.
文摘We demonstrate that the GaAs/AlGaAs nanowires(NWs) ensemble is fabricated into photo-detectors. Current–voltage(I–V) characteristics are measured on Ga As/Al Ga As core–shell ensemble NW photo-detectors at room-temperature before and after 1-MeV proton irradiation with fluences from 1.0 × 10^(13) cm^(-2) to 5.0 × 10^(14) cm^(-2). The degradation of photocurrent suggests that the point defects induced by proton radiation could cause both carrier lifetime and carrier mobility to decrease synchronously. Comparing with a GaAs quantum well, the degradations of light and dark current for the irradiated NWs photo-detector indicate that NWs material is a preferable potential candidate for space applications.