Gas and water distribution is discontinuous in tight gas reservoirs,and a quantitative understanding of the factors controlling the scale and distribution of effective reservoirs is important for natural gas explorati...Gas and water distribution is discontinuous in tight gas reservoirs,and a quantitative understanding of the factors controlling the scale and distribution of effective reservoirs is important for natural gas exploration.We used geological and geophysical explanation results,dynamic and static well test data,interference well test and static pressure test to calculate the distribution and characteristics of tight gas reservoirs in the H_(8) Member of the Shihezi Formation,Sulige gas field,Ordos Basin,northwest China.Our evaluation system examines the scale,physical properties,gas-bearing properties,and other reservoir features,and results in classification of effective reservoirs into types Ⅰ,Ⅱ,and Ⅲ that differ greatly in size,porosity,permeability,and saturation.The average thickness,length,and width of type Ⅰ effective reservoirs are 2.89,808,and 598 m,respectively,and the porosity is>10.0%,permeability is>1010^(–3)µm^(2),and average gas saturation is>60%.Compared with conventional gas reservoirs,tight gas effective reservoirs are small-scale and have low gas saturation.Our results show that the scale of the sedimentary system controls the size of the dominant microfacies in which tight gas effective reservoirs form.The presence of different types of interbeds hinders the connectivity of effective sand body reservoirs.The gas source conditions and pore characteristics of the reservoirs control sand body gas filling and reservoir formation.The physical properties and structural nature of the reservoirs control gas–water separation and the gas contents of effective reservoirs.The results are beneficial for the understanding of gas reservoir distribution in the whole Ordos Basin and other similar basins worldwide.展开更多
基金financially supported by the PetroChina Innovation Foundation(No.2019D-5007-0210)National Natural Science Foundation of China(Grant Nos.51904050、41902153)+2 种基金the Chongqing Natural Science Foundation Project(Nos.cstc2019jcyjmsxmX0725、0457)Open Fund of Engineering Research Center of Development and Management for Low to Ultra-Low Permeability Oil&Gas Reservoirs in West China,Ministry of Education(KFJJ-XB-2020-4)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN201901531).
文摘Gas and water distribution is discontinuous in tight gas reservoirs,and a quantitative understanding of the factors controlling the scale and distribution of effective reservoirs is important for natural gas exploration.We used geological and geophysical explanation results,dynamic and static well test data,interference well test and static pressure test to calculate the distribution and characteristics of tight gas reservoirs in the H_(8) Member of the Shihezi Formation,Sulige gas field,Ordos Basin,northwest China.Our evaluation system examines the scale,physical properties,gas-bearing properties,and other reservoir features,and results in classification of effective reservoirs into types Ⅰ,Ⅱ,and Ⅲ that differ greatly in size,porosity,permeability,and saturation.The average thickness,length,and width of type Ⅰ effective reservoirs are 2.89,808,and 598 m,respectively,and the porosity is>10.0%,permeability is>1010^(–3)µm^(2),and average gas saturation is>60%.Compared with conventional gas reservoirs,tight gas effective reservoirs are small-scale and have low gas saturation.Our results show that the scale of the sedimentary system controls the size of the dominant microfacies in which tight gas effective reservoirs form.The presence of different types of interbeds hinders the connectivity of effective sand body reservoirs.The gas source conditions and pore characteristics of the reservoirs control sand body gas filling and reservoir formation.The physical properties and structural nature of the reservoirs control gas–water separation and the gas contents of effective reservoirs.The results are beneficial for the understanding of gas reservoir distribution in the whole Ordos Basin and other similar basins worldwide.