By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under di...By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under different temperatures and stresses. The results indicate that the composite and the matrix have the same true stress exponent and true activation energy for creep, which are 3 and 144.63 kJ/mol, respectively. The creep of the composite is controlled by the creep of its matrix, which is mainly the controlling of viscous slip of dislocation, and the controlling of grain boundary slippage as a supplement. The creep constitutive model obtained from the experiment data can well describe the creep deformation pattern of the composite.展开更多
The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and ...The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.展开更多
Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construc...Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures.展开更多
Historically, there has been little correlation between the material properties used in(1) empirical formulae,(2) analytical formulations, and(3) numerical models. The various regressions and models may each provide e...Historically, there has been little correlation between the material properties used in(1) empirical formulae,(2) analytical formulations, and(3) numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson(2014) to show how the Effective Flow Stress(EFS) strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model(WAPEN)(Anderson and Walker,1991) and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques(empirical, analytical, and numerical) to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a baseline with a full constitutive model and to determine if the EFS could be estimated from a standardized constitutive model. We were unable to accomplish this.Several papers detailing simulations using the Johnson–Cook(JC) constitutive model were located and used as a basis for comparison. The authors were somewhat surprised to find that the JC parameters employed in those studies were not actually developed for the target materials that were evaluated experimentally. More disconcerting was the fact that a number of different sets of JC parameters were published for presumably the same material. Although not intended to be a critique of the JC model, this research raises a serious concern regarding the manner in which the model has been applied to terminal ballistics problems. The details of the study are included in this paper because the authors believe it helps put the discussion of EFS into proper context.展开更多
The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature ...The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature and the elastic-viscoplastic constitutive models were summarized.A series of tension experiments under the same temperature and different strain rates,and the same strain rate and different temperatures were done on 20 steel,35 steel and 45 steel.52 groups of rheological stress-strain curves were obtained.The experimental results were analyzed theoretically.The rheological stress constitutive models of carbon steels were built combining the strong points of the Perzyna model and Johnson-Cook model.Comparing the calculation results conducted from the model with the experiment results,the results proves that the model can reflect the temperature effect and strain rate effect of carbon constructional quality steels better.展开更多
Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitative...Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitatively describe the effect of t/d ratio on flow stress for pure copper. It is predicted that when t/d ratio is larger than a critical value, effect of t/d ratio on flow stress can be neglected. Existence of critical t/d ratio changes the Hall-Petch relationship and evolution of flow stress with thickness. A criterion was proposed to determine critical t/d ratio. Then a comprehensive constitutive model was developed to consider all the four factors, with parameters determined by fitting experimental data of high purity Ni. The predicted results show the same tendencies with experiment results. Particularly when t/d ratio decreases, Hall-Petch relationship and evolution of true stress show varied slopes with two transition points.展开更多
By combining the Bodner-Partom constitutive model and equivalent stressfunction, finite element methods and program on analyzing non-elastic deformation and stress forthermal viscoplastic material are studied in this ...By combining the Bodner-Partom constitutive model and equivalent stressfunction, finite element methods and program on analyzing non-elastic deformation and stress forthermal viscoplastic material are studied in this paper, and it's the first time that this materialmodel is used in a kind of engineering software-MARC. Thermal viscoplastic behavior of hightemperature alloy GH536 specimen with gap is analyzed by this program. The research results show itis feasible to analyze thermal viscoplastic behavior of specimen or structure by applying B-P model.展开更多
Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils,a function with double asymptotes is proposed for describing the dynamic constitutive relations of soils.The hysteresis loo...Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils,a function with double asymptotes is proposed for describing the dynamic constitutive relations of soils.The hysteresis loops observed during unloading and reloading show the same form as the skeleton curve and are constructed by taking the ultimate stress as the corresponding asymptote.The coeffcient of initial unloading modulus is used to ensure that the constructed hysteresis loop fts well with the experimental data.Then,a new dynamic constitutive model considering the asymmetry of skeleton curve is elaborated.The verifcation tests on saturated Nanjing fne sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model.It is found that the predicted curves by the UD model agree well with the test data.展开更多
The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are p...The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.展开更多
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece...Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.展开更多
The different physical states of saturated sand, including shear elasticity, positive dilatancy, and negative dilatancy (preliminary negative dilatancy, secondary negative dilatancy and reversal negative dilatancy) ar...The different physical states of saturated sand, including shear elasticity, positive dilatancy, and negative dilatancy (preliminary negative dilatancy, secondary negative dilatancy and reversal negative dilatancy) are revealed based on the pore water pressure response of saturated sand in undrained dynamic torsional tests of thin cylinder samples and also checked by the drained cyclic triaxial tests under a given mean effective normal stress. According to the effective stress path of different physical states under the undrained cyclic torsional tests the physical state transformation surface, stress history boundary and yield surface are determined, and the state boundary surface is also determined by the range of effective frictional stress state movement. Based on the moving yield surface without rotation, and the expanding stress history boundary surface relevant to the stress path variations under different physical states in 3D stress space, a physical state model is proposed to provide a new approach to calculating the transient pore water pressure under the undrained condition, and the volume strain of dilatation under drained condition in this paper.展开更多
Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which i...Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non- associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening be- havior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD mate- rial structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper.展开更多
Behavior of rockfills was investigated experimentally and theoretically.A series of standard triaxial compression tests were carried out on a quarried rockfill material at different stress levels.It was found that bot...Behavior of rockfills was investigated experimentally and theoretically.A series of standard triaxial compression tests were carried out on a quarried rockfill material at different stress levels.It was found that both the stress level and the shear stress ratio,like most of granular materials,controls the behavior of rockfill materials.At lower shear stress ratios the behavior is much more similar to a nonlinear elastic solid.When the shear stress goes further,the stressstrain curve shows an elasto-plastic behavior which suggests using the disturbed state concept to develop a constitutive model to predict the stress-strain behavior.The presented constitutive model complies reasonably with the experimental data.展开更多
基金Project(10151170003000002)supported by the National Science Foundation of Guangdong Province,China
文摘By the constant stress tensile creep test method, creep tests were performed on aluminum silicate short fiber-reinforced AZ91D magnesium matrix composite with volume fraction of 30% and its matrix alloy AZ91D under different temperatures and stresses. The results indicate that the composite and the matrix have the same true stress exponent and true activation energy for creep, which are 3 and 144.63 kJ/mol, respectively. The creep of the composite is controlled by the creep of its matrix, which is mainly the controlling of viscous slip of dislocation, and the controlling of grain boundary slippage as a supplement. The creep constitutive model obtained from the experiment data can well describe the creep deformation pattern of the composite.
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by Ph D Programs Foundation of Ministry of Education of China
文摘The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.
基金Project(50809023)supported by the National Natural Science Foundation of ChinaProject(2015B17714)supported by the Fundamental Research Funds for Central Universities,China
文摘Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures.
文摘Historically, there has been little correlation between the material properties used in(1) empirical formulae,(2) analytical formulations, and(3) numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson(2014) to show how the Effective Flow Stress(EFS) strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model(WAPEN)(Anderson and Walker,1991) and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques(empirical, analytical, and numerical) to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a baseline with a full constitutive model and to determine if the EFS could be estimated from a standardized constitutive model. We were unable to accomplish this.Several papers detailing simulations using the Johnson–Cook(JC) constitutive model were located and used as a basis for comparison. The authors were somewhat surprised to find that the JC parameters employed in those studies were not actually developed for the target materials that were evaluated experimentally. More disconcerting was the fact that a number of different sets of JC parameters were published for presumably the same material. Although not intended to be a critique of the JC model, this research raises a serious concern regarding the manner in which the model has been applied to terminal ballistics problems. The details of the study are included in this paper because the authors believe it helps put the discussion of EFS into proper context.
基金Project(2451002035) supported by Zhejiang Forestry UniversityProject(03JJY3007) supported by the Natural Science Foundations of Hunan ProvinceProject(02A008) supported by the Education Department of Hunan Province,China
文摘The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature and the elastic-viscoplastic constitutive models were summarized.A series of tension experiments under the same temperature and different strain rates,and the same strain rate and different temperatures were done on 20 steel,35 steel and 45 steel.52 groups of rheological stress-strain curves were obtained.The experimental results were analyzed theoretically.The rheological stress constitutive models of carbon steels were built combining the strong points of the Perzyna model and Johnson-Cook model.Comparing the calculation results conducted from the model with the experiment results,the results proves that the model can reflect the temperature effect and strain rate effect of carbon constructional quality steels better.
基金Projects(50835002,50975174,50821003)supported by the National Natural Science Foundation of ChinaProjects(200802480053,20100073110044)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitatively describe the effect of t/d ratio on flow stress for pure copper. It is predicted that when t/d ratio is larger than a critical value, effect of t/d ratio on flow stress can be neglected. Existence of critical t/d ratio changes the Hall-Petch relationship and evolution of flow stress with thickness. A criterion was proposed to determine critical t/d ratio. Then a comprehensive constitutive model was developed to consider all the four factors, with parameters determined by fitting experimental data of high purity Ni. The predicted results show the same tendencies with experiment results. Particularly when t/d ratio decreases, Hall-Petch relationship and evolution of true stress show varied slopes with two transition points.
基金This project was supported by NPU Youth Science Technology Innovation Foundation (020102).
文摘By combining the Bodner-Partom constitutive model and equivalent stressfunction, finite element methods and program on analyzing non-elastic deformation and stress forthermal viscoplastic material are studied in this paper, and it's the first time that this materialmodel is used in a kind of engineering software-MARC. Thermal viscoplastic behavior of hightemperature alloy GH536 specimen with gap is analyzed by this program. The research results show itis feasible to analyze thermal viscoplastic behavior of specimen or structure by applying B-P model.
基金the fnancial support by the Major Research Plan Integration Project of the National Natural Science Foundation of China under Grant No.91215301by the National Basic Research Program of China under Grant No.2011CB013601
文摘Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils,a function with double asymptotes is proposed for describing the dynamic constitutive relations of soils.The hysteresis loops observed during unloading and reloading show the same form as the skeleton curve and are constructed by taking the ultimate stress as the corresponding asymptote.The coeffcient of initial unloading modulus is used to ensure that the constructed hysteresis loop fts well with the experimental data.Then,a new dynamic constitutive model considering the asymmetry of skeleton curve is elaborated.The verifcation tests on saturated Nanjing fne sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model.It is found that the predicted curves by the UD model agree well with the test data.
基金Project supported by the National Key Research and Development Program of China(No.2017YFC0307604)the Talent Foundation of China University of Petroleum(No.Y1215042)the Graduate Innovation Program of China University of Petroleum(East China)(No.YCX2019084)
文摘The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.
文摘Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.
基金Project supported by the National Natural Science Foundation of China (No.10172071) the Natural Science Foundation of Shaanxi Province.
文摘The different physical states of saturated sand, including shear elasticity, positive dilatancy, and negative dilatancy (preliminary negative dilatancy, secondary negative dilatancy and reversal negative dilatancy) are revealed based on the pore water pressure response of saturated sand in undrained dynamic torsional tests of thin cylinder samples and also checked by the drained cyclic triaxial tests under a given mean effective normal stress. According to the effective stress path of different physical states under the undrained cyclic torsional tests the physical state transformation surface, stress history boundary and yield surface are determined, and the state boundary surface is also determined by the range of effective frictional stress state movement. Based on the moving yield surface without rotation, and the expanding stress history boundary surface relevant to the stress path variations under different physical states in 3D stress space, a physical state model is proposed to provide a new approach to calculating the transient pore water pressure under the undrained condition, and the volume strain of dilatation under drained condition in this paper.
基金Project supported by the National Natural Science Foundation of China (No. 41172276)the Central Financial Funds for the Development of Characteristic Key Disciplines in Local Universities(Nos. 106-00X101 and 106-5X1205)
文摘Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non- associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening be- havior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD mate- rial structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper.
文摘Behavior of rockfills was investigated experimentally and theoretically.A series of standard triaxial compression tests were carried out on a quarried rockfill material at different stress levels.It was found that both the stress level and the shear stress ratio,like most of granular materials,controls the behavior of rockfill materials.At lower shear stress ratios the behavior is much more similar to a nonlinear elastic solid.When the shear stress goes further,the stressstrain curve shows an elasto-plastic behavior which suggests using the disturbed state concept to develop a constitutive model to predict the stress-strain behavior.The presented constitutive model complies reasonably with the experimental data.