期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于AVMD和CNN的并网型微网线路故障诊断
1
作者 付林瑶 李春华 +1 位作者 汪本科 班勇霜 《分布式能源》 2023年第4期20-28,共9页
为提高微网三相线路故障诊断精度,提出基于自适应变分模态分解(adaptive variational mode decomposition,AVMD)和卷积神经网络(convolutional neural network,CNN)的微网线路故障诊断分类方法。首先建立包含风、光、水系统的微网径向... 为提高微网三相线路故障诊断精度,提出基于自适应变分模态分解(adaptive variational mode decomposition,AVMD)和卷积神经网络(convolutional neural network,CNN)的微网线路故障诊断分类方法。首先建立包含风、光、水系统的微网径向结构模型;采用AVMD将原始故障信号分解得到多个模态分量,其中变分模态分解(variational mode decomposition,VMD)的参数采用天鹰优化(aquila optimizer,AO)算法进行优化;诸多模态中只有少数模态保留了故障信号的信息,利用有效加权峰态相关(effective weighted peak relevance,EWPR)指数对模态分量进行选择,选取最能保留故障信息的3个模态作为敏感模态;剔除噪声和其他无关模态的影响,使用CNN对微网的线路故障进行诊断分类。生成110组故障数据用于训练和验证神经网络,结果表明22组验证数据集中共有21组数据分类正确,此研究方法对故障的诊断精度达到了95.46%。 展开更多
关键词 自适应变分模态分解(AVMD) 有效加权峰态相关(ewpr)指数 天鹰优化(AO) 卷积神经网络(CNN) 故障诊断分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部