In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method ...In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method to realize testability growth is introduced.Centering on the testability growth demands of new armored equipment,the deficiencies of traditional FMECA are analyzed.And an enhanced FMECA( EFMECA) method is proposed.The method increases the analysis contents,combines the information before the failure occurrence and impending failure modes together organically.Then the failure symptoms is analyzed,the failure modes and effects is determined,and the state development trend is predicted.Finally,the application of EFMECA method is illustrated by the example of the failure mode of typical armored equipment engine.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
The paper describes modern technologies of Computer Network Reliability. Software tool is developed to estimate of the CCN critical failure probability (construction of a criticality matrix) by results of the FME(C)A-...The paper describes modern technologies of Computer Network Reliability. Software tool is developed to estimate of the CCN critical failure probability (construction of a criticality matrix) by results of the FME(C)A-technique. The internal information factors, such as collisions and congestion of switchboards, routers and servers, influence on a network reliability and safety (besides of hardware and software reliability and external extreme factors). The means and features of Failures Modes and Effects (Critical) Analysis (FME(C)A) for reliability and criticality analysis of corporate computer networks (CCN) are considered. The examples of FME(C)A-Technique for structured cable system (SCS) is given. We also discuss measures that can be used for criticality analysis and possible means of criticality reduction. Finally, we describe a technique and basic principles of dependable development and deployment of computer networks that are based on results of FMECA analysis and procedures of optimization choice of means for fault-tolerance ensuring.展开更多
针对电液伺服阀FMECA(Failure Medes,Effect and Criticality Analysis)中对整体危害度分析欠缺及无法对危害度、发生概率和检测难易度进行权重分配的缺点,用模糊综合评判的方法对电液伺服阀FMECA进行了改进.通过建立因素集、评价集和...针对电液伺服阀FMECA(Failure Medes,Effect and Criticality Analysis)中对整体危害度分析欠缺及无法对危害度、发生概率和检测难易度进行权重分配的缺点,用模糊综合评判的方法对电液伺服阀FMECA进行了改进.通过建立因素集、评价集和权重集等的步骤,实施模糊综合评判,得到评判结果,给出电液伺服阀各故障模式对整个伺服阀系统的危害度等级.根据评判的结果,可以确定各故障模式之间的相对危害度大小并进行排序,同时可以通过二级评判得到伺服阀故障的危害度等级,对进一步提高可靠性和保障性水平有积极的意义.展开更多
文摘In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method to realize testability growth is introduced.Centering on the testability growth demands of new armored equipment,the deficiencies of traditional FMECA are analyzed.And an enhanced FMECA( EFMECA) method is proposed.The method increases the analysis contents,combines the information before the failure occurrence and impending failure modes together organically.Then the failure symptoms is analyzed,the failure modes and effects is determined,and the state development trend is predicted.Finally,the application of EFMECA method is illustrated by the example of the failure mode of typical armored equipment engine.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.
文摘The paper describes modern technologies of Computer Network Reliability. Software tool is developed to estimate of the CCN critical failure probability (construction of a criticality matrix) by results of the FME(C)A-technique. The internal information factors, such as collisions and congestion of switchboards, routers and servers, influence on a network reliability and safety (besides of hardware and software reliability and external extreme factors). The means and features of Failures Modes and Effects (Critical) Analysis (FME(C)A) for reliability and criticality analysis of corporate computer networks (CCN) are considered. The examples of FME(C)A-Technique for structured cable system (SCS) is given. We also discuss measures that can be used for criticality analysis and possible means of criticality reduction. Finally, we describe a technique and basic principles of dependable development and deployment of computer networks that are based on results of FMECA analysis and procedures of optimization choice of means for fault-tolerance ensuring.
文摘针对电液伺服阀FMECA(Failure Medes,Effect and Criticality Analysis)中对整体危害度分析欠缺及无法对危害度、发生概率和检测难易度进行权重分配的缺点,用模糊综合评判的方法对电液伺服阀FMECA进行了改进.通过建立因素集、评价集和权重集等的步骤,实施模糊综合评判,得到评判结果,给出电液伺服阀各故障模式对整个伺服阀系统的危害度等级.根据评判的结果,可以确定各故障模式之间的相对危害度大小并进行排序,同时可以通过二级评判得到伺服阀故障的危害度等级,对进一步提高可靠性和保障性水平有积极的意义.