This paper is devoted to improve the containment capacity of the Hesgoula south dumping site.The general geology of the dumping site was obtained through geological surveys.Physico-mechanical properties of silty clay ...This paper is devoted to improve the containment capacity of the Hesgoula south dumping site.The general geology of the dumping site was obtained through geological surveys.Physico-mechanical properties of silty clay and bedrock layers that have a large impact on the stability of the dump were measured by direct shear tests and triaxial tests in laboratory.Then ultimate bearing capacity of the substrate were analyzed and calculated.This paper proposed three capacity expansion and increase plans and used GeoStudio software for comparison.Through computation of the stability of the dump site slope after capacity expansion and increase for each plan,the capacity expansion plan was determined.The capacity expansion and increase plan will solve the problem of the current insufficient containment capacity of the Hesgoula south dumping site,which is of great significance for saving mine transportation costs,improving work efficiency,and reducing grassland occupation.展开更多
This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the...This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the expandable device could have much higher strength(>89 MPa)by laboratory tests,and the load bearing capacity of the expandable prop may depend on the stability of the supporting steel pipe structure.A good agreement was found between the laboratory test and numerical results in terms of the load bearing capacity and the final macro-bending failure pattern for expandable props with heights of 1.5 and 2.7 m,and the theoretical calculation for the strength of traditional steel structures is not directly suitable for the expandable props.Moreover,additional numerical simulations were performed for the expandable props with different normalized slenderness ratiosλ_(n)and loading eccentric distances e.The variation of stability coefficient of the expandable prop is in line with the Perry-Robertson equation and its correlation coefficients are fitted as a of 0.979 and b of 0.314.For estimating the load bearing capacity of the expandable props,the strength equation for traditional steel structures is improved by introducing a bending magnification factor and by modifying the normalized slenderness ratio to a converted slenderness ratio.Based on the underground field monitoring for the strength of expandable props with different heights,the empirical eccentric distances were back calculated,and a safety factor is introduced to obtain the designed strength of the expandable prop.In addition,a four-step design procedure is proposed for the expandable prop.展开更多
基金The authors gratefully acknowledge the financial support from the National Key Research and Development Plan of China(No.2018YFC0604501)the National Natural Science Foundation of China(51674264)the Yue Qi Distinguished Scholar Project,China University of Mining&Technology,Beijing(No.800015Z1138).
文摘This paper is devoted to improve the containment capacity of the Hesgoula south dumping site.The general geology of the dumping site was obtained through geological surveys.Physico-mechanical properties of silty clay and bedrock layers that have a large impact on the stability of the dump were measured by direct shear tests and triaxial tests in laboratory.Then ultimate bearing capacity of the substrate were analyzed and calculated.This paper proposed three capacity expansion and increase plans and used GeoStudio software for comparison.Through computation of the stability of the dump site slope after capacity expansion and increase for each plan,the capacity expansion plan was determined.The capacity expansion and increase plan will solve the problem of the current insufficient containment capacity of the Hesgoula south dumping site,which is of great significance for saving mine transportation costs,improving work efficiency,and reducing grassland occupation.
基金This work was financially supported by the National Key Research and Development Program of China(No.2022YFC2903804)the National Natural Science Foundation of China(Nos.52004054,52274115,51874068 and 52074062).
文摘This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the expandable device could have much higher strength(>89 MPa)by laboratory tests,and the load bearing capacity of the expandable prop may depend on the stability of the supporting steel pipe structure.A good agreement was found between the laboratory test and numerical results in terms of the load bearing capacity and the final macro-bending failure pattern for expandable props with heights of 1.5 and 2.7 m,and the theoretical calculation for the strength of traditional steel structures is not directly suitable for the expandable props.Moreover,additional numerical simulations were performed for the expandable props with different normalized slenderness ratiosλ_(n)and loading eccentric distances e.The variation of stability coefficient of the expandable prop is in line with the Perry-Robertson equation and its correlation coefficients are fitted as a of 0.979 and b of 0.314.For estimating the load bearing capacity of the expandable props,the strength equation for traditional steel structures is improved by introducing a bending magnification factor and by modifying the normalized slenderness ratio to a converted slenderness ratio.Based on the underground field monitoring for the strength of expandable props with different heights,the empirical eccentric distances were back calculated,and a safety factor is introduced to obtain the designed strength of the expandable prop.In addition,a four-step design procedure is proposed for the expandable prop.