A numerical study was performed to explore the unsteady interaction between the upstream propeller and the downstream swirl recovery vane (SRV) by transient simulations. Much larger fluctuations of thrust coefficien...A numerical study was performed to explore the unsteady interaction between the upstream propeller and the downstream swirl recovery vane (SRV) by transient simulations. Much larger fluctuations of thrust coefficient were observed on the vane, which indicates that the varia- tions of the total efficiency depend mainly on the working performance of the stator. The harmonic loads of the decomposed unsteady blade-surface pressures show that the stator experiences about ten times higher of unsteadiness compared with the rotor. Notable changes appear at the vane lead- ing edge due to the potential disturbance as well as the sweeping effects from the wake of the upstream propeller, whereas more significant unsteadiness occurs at the stator tip region as a result of the interaction between the rotor/stator tip vortices. The visualization of vortex structures addresses that the rotor tip vortex has a dominant effect on the stator tip vortex since the latter one starts right at the impingement location on the vane top in this configuration. Furthermore, a longer and a shorter SRV were investigated based on the original case to explore different inter- action patterns for the rotor/stator tip vortices. Weaker effects have been observed as expected.展开更多
基金supported by the National Natural Science Foundation of China(No.51376150)
文摘A numerical study was performed to explore the unsteady interaction between the upstream propeller and the downstream swirl recovery vane (SRV) by transient simulations. Much larger fluctuations of thrust coefficient were observed on the vane, which indicates that the varia- tions of the total efficiency depend mainly on the working performance of the stator. The harmonic loads of the decomposed unsteady blade-surface pressures show that the stator experiences about ten times higher of unsteadiness compared with the rotor. Notable changes appear at the vane lead- ing edge due to the potential disturbance as well as the sweeping effects from the wake of the upstream propeller, whereas more significant unsteadiness occurs at the stator tip region as a result of the interaction between the rotor/stator tip vortices. The visualization of vortex structures addresses that the rotor tip vortex has a dominant effect on the stator tip vortex since the latter one starts right at the impingement location on the vane top in this configuration. Furthermore, a longer and a shorter SRV were investigated based on the original case to explore different inter- action patterns for the rotor/stator tip vortices. Weaker effects have been observed as expected.