The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2...The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.展开更多
基金supported in part by the Social Science Foundation of Ministry of Education(07JJD790154)the National Science Foundation for Young Scholars (60803076)+2 种基金the Natural Science Foundation of Zhejiang Province (Y6090211)Foundation of Education Department of Zhejiang Province (20070590)the Young Talent Foundation of Zhejiang Gongshang University
文摘The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.