A solid oxide electrolysis cell(SOEC) is an environmental-friendly device which can convert electric energy into chemical energy with high efficiency. In this paper,the progress on structure and operational principle ...A solid oxide electrolysis cell(SOEC) is an environmental-friendly device which can convert electric energy into chemical energy with high efficiency. In this paper,the progress on structure and operational principle of an SOEC for co-electrolyzing H2O and CO2to generate syngas was reviewed. The recent development of high temperature H2O/CO2co-electrolysis from solid oxide single electrolysis cell was introduced. Also investigated was H2O/CO2co-electrolysis research using hydrogen electrode-supported nickel(Ni)-yttria-stabilized zirconia(YSZ)/YSZ/Sr-doped LaMnO3(LSM)-YSZ cells in our group. With 50 % H2O,15.6 % H2and 34.4 % CO2inlet gas to Ni- YSZ electrode,polarization curves(I- U curves) and electrochemical impedance spectra(EIS) were measured at 800 ℃ and 900 ℃. Long-term durability of electrolysis was carried out with the same inlet gas at 900 ℃ and 0.2 A/cm2. In addition,the improvement of structure and development of novel materials for increasing the electrolysis efficiency of SOECs were put forward as well.展开更多
文摘A solid oxide electrolysis cell(SOEC) is an environmental-friendly device which can convert electric energy into chemical energy with high efficiency. In this paper,the progress on structure and operational principle of an SOEC for co-electrolyzing H2O and CO2to generate syngas was reviewed. The recent development of high temperature H2O/CO2co-electrolysis from solid oxide single electrolysis cell was introduced. Also investigated was H2O/CO2co-electrolysis research using hydrogen electrode-supported nickel(Ni)-yttria-stabilized zirconia(YSZ)/YSZ/Sr-doped LaMnO3(LSM)-YSZ cells in our group. With 50 % H2O,15.6 % H2and 34.4 % CO2inlet gas to Ni- YSZ electrode,polarization curves(I- U curves) and electrochemical impedance spectra(EIS) were measured at 800 ℃ and 900 ℃. Long-term durability of electrolysis was carried out with the same inlet gas at 900 ℃ and 0.2 A/cm2. In addition,the improvement of structure and development of novel materials for increasing the electrolysis efficiency of SOECs were put forward as well.