The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further cause...The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.展开更多
A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is perf...A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side.展开更多
基金Project(2011CB706606) supported by the National Basic Research of ChinaProject(51405375) supported by the National Natural Science Foundation of China
文摘The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.
基金funded by the National Natural Science Foundation of China(Funding No.51206109)
文摘A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side.