期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
1
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural Network Depthwise Dilated Separable convolution Hierarchical multi-scale Feature Fusion
下载PDF
MSSTNet:Multi-scale facial videos pulse extraction network based on separable spatiotemporal convolution and dimension separable attention
2
作者 Changchen ZHAO Hongsheng WANG Yuanjing FENG 《Virtual Reality & Intelligent Hardware》 2023年第2期124-141,共18页
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi... Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction. 展开更多
关键词 Remote photoplethysmography Heart rate Separable spatiotemporal convolution Dimension separable attention multi-scale Neural network
下载PDF
MsFireD-Net:A lightweight and efficient convolutional neural network for flame and smoke segmentation
3
作者 F.M.Anim Hossain Youmin Zhang 《Journal of Automation and Intelligence》 2023年第3期130-138,共9页
With the rising frequency and severity of wildfires across the globe,researchers have been actively searching for a reliable solution for early-stage forest fire detection.In recent years,Convolutional Neural Networks... With the rising frequency and severity of wildfires across the globe,researchers have been actively searching for a reliable solution for early-stage forest fire detection.In recent years,Convolutional Neural Networks(CNNs)have demonstrated outstanding performances in computer vision-based object detection tasks,including forest fire detection.Using CNNs to detect forest fires by segmenting both flame and smoke pixels not only can provide early and accurate detection but also additional information such as the size,spread,location,and movement of the fire.However,CNN-based segmentation networks are computationally demanding and can be difficult to incorporate onboard lightweight mobile platforms,such as an Uncrewed Aerial Vehicle(UAV).To address this issue,this paper has proposed a new efficient upsampling technique based on transposed convolution to make segmentation CNNs lighter.This proposed technique,named Reversed Depthwise Separable Transposed Convolution(RDSTC),achieved F1-scores of 0.78 for smoke and 0.74 for flame,outperforming U-Net networks with bilinear upsampling,transposed convolution,and CARAFE upsampling.Additionally,a Multi-signature Fire Detection Network(MsFireD-Net)has been proposed in this paper,having 93%fewer parameters and 94%fewer computations than the RDSTC U-Net.Despite being such a lightweight and efficient network,MsFireD-Net has demonstrated strong results against the other U-Net-based networks. 展开更多
关键词 Forest fire detection convolutional neural network Semantic segmentation UAV efficient upsampling
下载PDF
基于改进EfficientNetB0模型的葡萄叶部病害识别方法
4
作者 胡施威 邓建新 +1 位作者 王浩宇 邱林 《现代电子技术》 北大核心 2024年第15期73-80,共8页
为了高效、准确地识别葡萄叶部病害,文中提出了LE-EfficientNet模型,在EfficientNetB0模型基础上,采用大核注意力(LKA)机制替换原模型部分MBConv模块中的压缩激励网络(SENet),接着利用跳跃连接在最后一层卷积层后面融入高效通道注意力机... 为了高效、准确地识别葡萄叶部病害,文中提出了LE-EfficientNet模型,在EfficientNetB0模型基础上,采用大核注意力(LKA)机制替换原模型部分MBConv模块中的压缩激励网络(SENet),接着利用跳跃连接在最后一层卷积层后面融入高效通道注意力机制(ECA),结合三种注意力机制让网络更高效地提取葡萄叶部病害的局部重要信息,并引用Adam优化器替换原模型的SGD优化器,提升了分类模型的泛化能力。在PlantVillage葡萄叶部病害数据集上训练,结果表明,LE-EfficientNet模型相比原模型准确率提升了1.58%,总体精度提升了1.62%,召回率提升了1.46%,F_(1)分数提升了1.53%,并且参数量仅有10.18 MB,比原模型参数量降低2.7 MB,与其他经典网络模型相比,性能评估指标均有不同程度的提升,该研究为葡萄叶部病害识别提供了新的参考与借鉴。 展开更多
关键词 葡萄叶部病害 卷积神经网络 图像分类 大核注意力机制 高效通道注意力机制 efficientNetB0
下载PDF
Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism
5
作者 Bing Li Liangyu Wang +3 位作者 Xia Liu Hongbin Fan Bo Wang Shoudi Tong 《Computers, Materials & Continua》 SCIE EI 2024年第7期1543-1561,共19页
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a... Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters. 展开更多
关键词 Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) breast tumor segmentation multi-scale dilated convolution boundary attention the hybrid loss function with boundary weight
下载PDF
A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings 被引量:9
6
作者 Ding Yunhao Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期417-423,共7页
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ... Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data. 展开更多
关键词 fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction
下载PDF
Sampling Methods for Efficient Training of Graph Convolutional Networks:A Survey 被引量:5
7
作者 Xin Liu Mingyu Yan +3 位作者 Lei Deng Guoqi Li Xiaochun Ye Dongrui Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第2期205-234,共30页
Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other meth... Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods. 展开更多
关键词 efficient training graph convolutional networks(GCNs) graph neural networks(GNNs) sampling method
下载PDF
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:2
8
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction multi-scale convolutional neural networks Gated recurrent unit
下载PDF
Pedestrian attribute classification with multi-scale and multi-label convolutional neural networks
9
作者 朱建清 Zeng Huanqiang +2 位作者 Zhang Yuzhao Zheng Lixin Cai Canhui 《High Technology Letters》 EI CAS 2018年第1期53-61,共9页
Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label c... Pedestrian attribute classification from a pedestrian image captured in surveillance scenarios is challenging due to diverse clothing appearances,varied poses and different camera views. A multiscale and multi-label convolutional neural network( MSMLCNN) is proposed to predict multiple pedestrian attributes simultaneously. The pedestrian attribute classification problem is firstly transformed into a multi-label problem including multiple binary attributes needed to be classified. Then,the multi-label problem is solved by fully connecting all binary attributes to multi-scale features with logistic regression functions. Moreover,the multi-scale features are obtained by concatenating those featured maps produced from multiple pooling layers of the MSMLCNN at different scales. Extensive experiment results show that the proposed MSMLCNN outperforms state-of-the-art pedestrian attribute classification methods with a large margin. 展开更多
关键词 PEDESTRIAN ATTRIBUTE CLASSIFICATION multi-scale features MULTI-LABEL CLASSIFICATION convolutional NEURAL network (CNN)
下载PDF
An Efficient Method for Identifying Lower Limb Behavior Intentions Based on Surface Electromyography 被引量:1
10
作者 Liuyi Ling Yiwen Wang +5 位作者 Fan Ding Li Jin Bin Feng Weixiao Li Chengjun Wang Xianhua Li 《Computers, Materials & Continua》 SCIE EI 2023年第12期2771-2790,共20页
Surface electromyography(sEMG)is widely used for analyzing and controlling lower limb assisted exoskeleton robots.Behavior intention recognition based on sEMG is of great significance for achieving intelligent prosthe... Surface electromyography(sEMG)is widely used for analyzing and controlling lower limb assisted exoskeleton robots.Behavior intention recognition based on sEMG is of great significance for achieving intelligent prosthetic and exoskeleton control.Achieving highly efficient recognition while improving performance has always been a significant challenge.To address this,we propose an sEMG-based method called Enhanced Residual Gate Network(ERGN)for lower-limb behavioral intention recognition.The proposed network combines an attention mechanism and a hard threshold function,while combining the advantages of residual structure,which maps sEMG of multiple acquisition channels to the lower limb motion states.Firstly,continuous wavelet transform(CWT)is used to extract signals features from the collected sEMG data.Then,a hard threshold function serves as the gate function to enhance signals quality,with an attention mechanism incorporated to improve the ERGN’s performance further.Experimental results demonstrate that the proposed ERGN achieves extremely high accuracy and efficiency,with an average recognition accuracy of 98.41%and an average recognition time of only 20 ms-outperforming the state-of-the-art research significantly.Our research provides support for the application of lower limb assisted exoskeleton robots. 展开更多
关键词 SEMG movement intention efficient network convolutional neural network
下载PDF
Clothing Parsing Based on Multi-Scale Fusion and Improved Self-Attention Mechanism
11
作者 陈诺 王绍宇 +3 位作者 陆然 李文萱 覃志东 石秀金 《Journal of Donghua University(English Edition)》 CAS 2023年第6期661-666,共6页
Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.Th... Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.This paper presents a convolutional structure with multi-scale fusion to optimize the step of clothing feature extraction and a self-attention module to capture long-range association information.The structure enables the self-attention mechanism to directly participate in the process of information exchange through the down-scaling projection operation of the multi-scale framework.In addition,the improved self-attention module introduces the extraction of 2-dimensional relative position information to make up for its lack of ability to extract spatial position features from clothing images.The experimental results based on the colorful fashion parsing dataset(CFPD)show that the proposed network structure achieves 53.68%mean intersection over union(mIoU)and has better performance on the clothing parsing task. 展开更多
关键词 clothing parsing convolutional neural network multi-scale fusion self-attention mechanism vision Transformer
下载PDF
Lightweight Image Super-Resolution via Weighted Multi-Scale Residual Network 被引量:6
12
作者 Long Sun Zhenbing Liu +3 位作者 Xiyan Sun Licheng Liu Rushi Lan Xiaonan Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1271-1280,共10页
The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods ha... The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods have achieved significant improvements in image super-resolution(SR),current CNNbased techniques mainly contain massive parameters and a high computational complexity,limiting their practical applications.In this paper,we present a fast and lightweight framework,named weighted multi-scale residual network(WMRN),for a better tradeoff between SR performance and computational efficiency.With the modified residual structure,depthwise separable convolutions(DS Convs)are employed to improve convolutional operations’efficiency.Furthermore,several weighted multi-scale residual blocks(WMRBs)are stacked to enhance the multi-scale representation capability.In the reconstruction subnetwork,a group of Conv layers are introduced to filter feature maps to reconstruct the final high-quality image.Extensive experiments were conducted to evaluate the proposed model,and the comparative results with several state-of-the-art algorithms demonstrate the effectiveness of WMRN. 展开更多
关键词 convolutional neural network(CNN) lightweight framework multi-scale SUPER-RESOLUTION
下载PDF
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
13
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
下载PDF
An efficient projection defocus algorithm based on multi-scale convolution kernel templates 被引量:1
14
作者 Bo ZHU Li-jun XIE +1 位作者 Guang-hua SONG Yao ZHENG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第12期930-940,共11页
The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects an... The focal problems of projection include out-of-focus projection images from the projector caused by incomplete mechanical focus and screen-door effects produced by projection pixilation. To eliminate these defects and enhance the imaging quality and clarity of projectors, a novel adaptive projection defocus algorithm is proposed based on multi-scale convolution kernel templates. This algorithm applies the improved Sobel-Tenengrad focus evaluation function to calculate the sharpness degree of intensity equalization and then constructs multi-scale defocus convolution kernels to remap and render the defocus projection image. The resulting projection defocus corrected images can eliminate out-of-focus effects and improve the sharpness of uncorrected images. Experiments show that the algorithm works quickly and robustly and that it not only effectively eliminates visual artifacts and can run on a self-designed smart projection system in real time but also significantly improves the resolution and clarity of the observer's visual perception. 展开更多
关键词 Projection focal Sobel-Tenengrad evaluation function Projector defocus multi-scale convolution kernels
原文传递
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
15
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(CNN) cloud RAN deep Q-network(DQN)
下载PDF
Defect Detection Algorithm of Patterned Fabrics Based on Convolutional Neural Network 被引量:1
16
作者 XU Yang FEI Libin +1 位作者 YU Zhiqi SHENG Xiaowei 《Journal of Donghua University(English Edition)》 CAS 2021年第1期36-42,共7页
The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly... The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly affected by background patterns and are difficult to effectively extract flaw features.Therefore,a convolutional neural network(CNN)with automatic feature extraction is proposed.On the basis of the two-stage detection model Faster R-CNN,Resnet-50 is used as the backbone network,and the problem of flaws with extreme aspect ratio is solved by improving the initialization algorithm of the prior frame aspect ratio,and the improved multi-scale model is designed to improve detection of small defects.The cascade R-CNN is introduced to improve the accuracy of defect detection,and the online hard example mining(OHEM)algorithm is used to strengthen the learning of hard samples to reduce the interference of complex backgrounds on the defect detection of patterned fabrics,and construct the focal loss as a loss function to reduce the impact of sample imbalance.In order to verify the effectiveness of the improved algorithm,a defect detection comparison experiment was set up.The experimental results show that the accuracy of the defect detection algorithm of patterned fabrics in this paper can reach 95.7%,and it can accurately locate the defect location and meet the actual needs of the factory. 展开更多
关键词 patterned fabrics defect detection convolutional neural network(CNN) multi-scale model cascade network
下载PDF
A Multi-Scale Network with the Encoder-Decoder Structure for CMR Segmentation 被引量:1
17
作者 Chaoyang Xia Jing Peng +1 位作者 Zongqing Ma Xiaojie Li 《Journal of Information Hiding and Privacy Protection》 2019年第3期109-117,共9页
Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are ... Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%. 展开更多
关键词 Cardiac magnetic resonance imaging multi-scale semantic segmentation convolutional neural networks
下载PDF
Identification of tomato leaf diseases using convolutional neural network with multi-scale and feature reuse
18
作者 Peng Li Nan Zhong +2 位作者 Wei Dong Meng Zhang Dantong Yang 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第6期226-235,共10页
Various diseases seriously affect the quality and yield of tomatoes. Fast and accurate identification of disease types is of great significance for the development of smart agriculture. Many Convolution Neural Network... Various diseases seriously affect the quality and yield of tomatoes. Fast and accurate identification of disease types is of great significance for the development of smart agriculture. Many Convolution Neural Network (CNN) models have been applied to the identification of tomato leaf diseases and achieved good results. However, some of these are executed at the cost of large calculation time and huge storage space. This study proposed a lightweight CNN model named MFRCNN, which is established by the multi-scale and feature reuse structure rather than simply stacking convolution layer by layer. To examine the model performances, two types of tomato leaf disease datasets were collected. One is the laboratory-based dataset, including one healthy and nine diseases, and the other is the field-based dataset, including five kinds of diseases. Afterward, the proposed MFRCNN and some popular CNN models (AlexNet, SqueezeNet, VGG16, ResNet18, and GoogLeNet) were tested on the two datasets. The results showed that compared to traditional models, the MFRCNN achieved the optimal performance, with an accuracy of 99.01% and 98.75% in laboratory and field datasets, respectively. The MFRCNN not only had the highest accuracy but also had relatively less computing time and few training parameters. Especially in terms of storage space, the MFRCNN model only needs 2.7 MB of space. Therefore, this work provides a novel solution for plant disease diagnosis, which is of great importance for the development of plant disease diagnosis systems on low-performance terminals. 展开更多
关键词 tomato diseases convolutional neural network confusion matrix multi-scale feature reuse
原文传递
面向工业表面缺陷检测的改进YOLOv8算法
19
作者 苏佳 贾泽 +1 位作者 秦一畅 张建燕 《计算机工程与应用》 CSCD 北大核心 2024年第14期187-196,共10页
针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,... 针对工业缺陷对比度低、周围干扰信息多导致的误检率和漏检率高的问题,提出一种基于改进YOLOv8的工业表面缺陷检测算法EML-YOLO。通过设计一种高效大卷积模块(efficient large kernel,ELK),在保留空间信息的同时提供多尺度的特征表示,从而提高模型的特征提取能力;提出多支路并行的特征融合模块(multi-scale context module,MCM),使得模型能够获取丰富的特征信息和全局上下文信息;在Neck模块中通过特征压缩和精简来减少模型的参数量和计算量,让模型更适用于资源有限的工业场景。采用GC10-DET和DeepPCB两个工业表面缺陷数据集来验证改进的EML-YOLO算法的有效性。实验结果表明,在GC10-DET数据集和DeepPCB数据集上,检测准确率上分别提高了4.3个百分点和2.9个百分点,参数量仅2.7×10^(6)。所提算法可以较好地应用于工业缺陷检测场景。 展开更多
关键词 缺陷检测 高效大卷积模块 多尺度特征 特征压缩 YOLOv8
下载PDF
改进YOLACT的服装图像实例分割方法
20
作者 顾梅花 董晓晓 +1 位作者 花玮 崔琳 《纺织高校基础科学学报》 CAS 2024年第2期82-91,共10页
针对服装图像实例分割精度与速度较低的问题,提出一种基于改进YOLACT的服装图像实例分割方法。以YOLACT为基础模型,首先在ResNet101网络中采用深度可分离卷积代替传统卷积,减少模型计算量和模型参数,加快模型速度;然后,在模板生成网络... 针对服装图像实例分割精度与速度较低的问题,提出一种基于改进YOLACT的服装图像实例分割方法。以YOLACT为基础模型,首先在ResNet101网络中采用深度可分离卷积代替传统卷积,减少模型计算量和模型参数,加快模型速度;然后,在模板生成网络后引入高效通道注意力模块,优化输出特征,捕获服装图像的跨通道交互信息,加强对掩膜分支的特征提取能力;最后,训练过程采用LeakyReLU激活函数,避免反向传播时权值信息得不到及时更新,提升模型对服装图像负值特征信息的提取能力。结果表明:与原模型相比,所提方法能有效减少模型参数量,在提升速度的同时提高了精度,其速度提升了4.82帧/s,平均精度提升了5.4%。 展开更多
关键词 服装图像实例分割 YOLACT 深度可分离卷积 高效通道注意力 激活函数
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部