期刊文献+
共找到1,884篇文章
< 1 2 95 >
每页显示 20 50 100
Effects of Nano-Carbon Water-Retaining Fertilizer on Yield and Nitrogen and Phosphorus Utilization Efficiency of Tuber Mustard
1
作者 Chen WANG Ruitong WANG Zhanbin HUANG 《Asian Agricultural Research》 2018年第9期62-65,共4页
The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with... The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with equal amount of effective composition. The results showed that the yield of tuber mustard was 50 670-56 496 kg/ha in treatments of nano-carbon water-retaining fertilizer decreasing by 10%-40%,and compared with local tuber mustard fertilizer,the average yield was increased by 94. 8%. The yield increasing rate of tuber mustard was 93. 0%in treatment of nano-carbon water-retaining fertilizer decreasing by 30%. The average fertilizer utilization efficiency of nitrogen and phosphorus was 54% and 39. 7%,respectively,the average increment of fertilizer utilization efficiency was 36% and 37%,respectively compared with local tuber mustard fertilizer. Especially in treatment of reducing nano-carbon water-retaining fertilizer by 30%,the nitrogen and phosphorus fertilizer utilization efficiency was increased by 64% and 56%,respectively. By comprehensive comparison,it was found that nano-carbon waterretaining fertilizer and the treatment of 30% reduction could significantly improve the yield of tuber mustard and fertilizer utilization efficiency,and have popularization and application value in the Three Gorges Reservoir area. 展开更多
关键词 田间试验 块茎芥菜 肥料 化肥
下载PDF
Effects of Different Rainwater Diversion Patterns on Rainwater Collection Efficiency and Water Utilization Efficiency in Cornfield 被引量:1
2
作者 Wang Jianxin Wang Panlei +3 位作者 Duan Zongyan Pan Yanhua Chen Shihua Lu Yao 《Meteorological and Environmental Research》 CAS 2015年第8期54-56,共3页
Four rainwater diversion patterns including undisturbed soil ditch (T1), slope compaction (T2), asbestos sheet covering after compac- tion (T3) and plastic film covering after compaction (T4) were set in cornf... Four rainwater diversion patterns including undisturbed soil ditch (T1), slope compaction (T2), asbestos sheet covering after compac- tion (T3) and plastic film covering after compaction (T4) were set in cornfield in arid areas of Yunnan Province, and effects of various patterns on rainwater collection efficiency, water utilization efficiency and corn yield were studied. The results shows that rainwater collection efficiency, water utilization efficiency and corn yield of the four diversion patterns presented the same trend, namely T4 〉T3 〉T2 〉T1. Overall, rainwater collection efficiencies of the four diversion patterns ranged from 41.7% to 58.7% ; compared with T1, water utilization efficiencies of T2 ,T3 and T4 increased by 34.9%, 53.5% and 92.5%, and maize yields of them improved by 1 767.0, 1 981.5 and 2 385.0 kg/hm2. 展开更多
关键词 Arid areas of Yunnan MAIZE Diversion pattern Collection efficiency water utilization efficiency China
下载PDF
Photosynthetic Light Utilization Efficiency, Water Relations and Leaf Growth of C3 and CAM Tropical Orchids under Natural Conditions 被引量:1
3
作者 Shawn Tay Jie He Tim Wing Yam 《American Journal of Plant Sciences》 2015年第18期2949-2959,共11页
Native orchid species of Singapore in their natural conditions experience stress from high irradiance, high temperatures and periods of extended low rainfall, which impact orchid plant physiology and lead to reduced g... Native orchid species of Singapore in their natural conditions experience stress from high irradiance, high temperatures and periods of extended low rainfall, which impact orchid plant physiology and lead to reduced growth and productivity. In this study, it was found that there was a reduction in photochemical efficiency of photosystem II (PSII) in 6 native orchid species under high light (HL) and Bulbophyllum membranaceum under low light (LL). There was chronic photoinhibition in these 6 orchid species over a period of 3 months after transplanting onto the tree trunks without watering and fertilization, especially in Coelogynes mayeriana and Bulbophyllum membranaceum under both HL and LL. This chronic photoinhibition caused by sustained period of water deficit in their natural conditions was later reversed by natural re-watering conditions from higher rainfall. These results indicate that water deficit has a greater impact on photosynthetic light utilization efficiency than excess light. The present study also showed that after natural rewatering, relative water content (RWC) of leaves and pseudobulbs generally increased. During the natural re-watering, total leaf area also gradually increased and reached maximum expansion after 7 weeks under both HL and LL, with some exceptions due to leaf abscission or decline in total leaf area, possibly a strategy for water conservation. 展开更多
关键词 ORCHID CAM C3 PHOTOSYNTHETIC LIGHT utilization Efficiency water Relations and LEAF Growth
下载PDF
Effect of Rural Sewage Irrigation Regime on Water-Nitrogen Utilization and Crop Growth of Paddy Rice in Southern China
4
作者 Menghua Xiao Yuanyuan Li Shizong Zheng 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第4期1215-1233,共19页
Reclaimed water irrigation has become an effective mean to alleviate the contradiction between water availability and its consumption worldwide.In this study,three types of irrigation water sources(rural sewage’s pri... Reclaimed water irrigation has become an effective mean to alleviate the contradiction between water availability and its consumption worldwide.In this study,three types of irrigation water sources(rural sewage’s primary treated water R1 and secondary treated water R2,and river water R3)meeting the requirements of water quality for farmland irrigation were selected,and three types of irrigation water levels(low water levelW1 of 0–80 mm,medium water level W2 of 0–100 mm,and high water level W3 of 0–150 mm)were adopted to carry out research on the influence mechanismS of different irrigation water sources and water levels on water and nitrogen use and crop growth in paddy field.The water quantity indicators(irrigation times and irrigation volume),soil ammonium nitrogen(NH4+-N)and nitrate nitrogen(NO3−-N),rice yield indicators(thousand-grain weight,the number of grains per spike,and the number of effective spikes),and quality indicators(the amount of protein,amylose,vitamin C,nitrate and nitrite content)of rice were measured.The results showed that,the average irrigation volume under W3 was 2.4 and 1.9 times of that under W1 and W2,respectively.Compared with R3,the peak consumption of rice was lagged behind under R1 and R2,and the nitrogen form in 0–40 cm soil layers under rural sewage irrigation was mainly NH4+-N.The changes of NO3−-N and NH4+-N in the 0–40 cm soil layer showed the trend of declining and then increasing.The water level control only had a significant effect on the change of NO3−-N in the 60–80 cm soil layer.Both irrigation water use efficiency and crop water use efficiency were gradually reduced with the increase of field water level control.The nitrogen utilization efficiency under rural sewage irrigation was significantly higher than that under R3.Compared with the R3,rural sewage irrigation could significantly increase the yield of rice,and as the field water level rose,the effect of yield promotion was more obvious.It was noteworthy that the grain of rice under R1 monitored the low nitrate and nitrite content,but no nitrate and nitrite was discovered under R2 and R3.Therefore,reasonable rural sewage irrigation(R2)and medium water level(W2)were beneficial to improve nitrogen utilization efficiency,crop yield and crop quality promotion. 展开更多
关键词 Reclaimed water irrigation water level control water use efficiency nitrogen utilization crop quality
下载PDF
Study on the Influence of Sowing Rate,Water and Fertilizer Coupling on Water Use Efficiency of Fodder Millet
5
作者 Hanzhang ZHOU Huan LIU +4 位作者 Xinjian ZHOU Zhimin WEI Shuhong YUAN Shenglin HOU Xueyan XIA 《Asian Agricultural Research》 2016年第10期77-87,96,共12页
To study the influence of sowing rate,water and fertilizer( N,P and K) coupling on water use efficiency of fodder millet grown in autumn fallow field,taking " Jigu 18" as the tested material,a orthogonal rot... To study the influence of sowing rate,water and fertilizer( N,P and K) coupling on water use efficiency of fodder millet grown in autumn fallow field,taking " Jigu 18" as the tested material,a orthogonal rotation combination with five factors was designed in pot experiment. Results showed that both water and phosphate fertilizer had important impacts on water use efficiency,in which water had the maximum impact,followed by phosphate fertilizer,and nitrogen fertilizer,potassium fertilizer and sowing rate all had no obvious impact. Significant item of sowing rate,water and fertilizer coupling had the below sequence: potassium fertilizer + sowing rate > nitrogen fertilizer + phosphate fertilizer > water + phosphate fertilizer > water + sowing rate > water + potassium fertilizer,and other items had no obvious impact. Mathematical model was established: y = 44. 26- 1. 311x1- 2. 298x2- 3. 682x3- 6. 401x4- 34. 540x5+ 0. 273x1x3+ 0. 118x1x4+ 0. 843x1x5- 1. 948x2x3+ 6. 631x4x5. The optimal scheme taking economic benefit as the examining index was cleared,that is,soil water content maintained 10%,and sowing rate of fodder millet was 15 kg / hm2. By the scheme,water use efficiency was 26. 24 g / kg,and hay yield was13980. 90 kg / hm2,with economic benefit of 13830. 90 yuan/hm2,which was 3063. 73 yuan/hm2 more than the optimized combination with the highest hay yield,with increase magnitude of 22. 15%,and was 6215. 15 yuan / hm2 more than the optimized combination with the highest water use efficiency,with increase magnitude of 44. 94%. The research could provide theoretic basis and technical support for production practice of fodder millet grown in autumn fallow field. 展开更多
关键词 Fodder millet Sowing rate water and fertilizer coupling water use efficiency
下载PDF
Effects of Different Irrigation Amounts on Water Consumption and Water Use Efficiency of Greenhouse Cucumber 被引量:6
6
作者 郭生虎 孔德杰 +2 位作者 张源沛 郑国宝 朱金霞 《Agricultural Science & Technology》 CAS 2010年第9期217-220,共4页
[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different w... [Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different water amounts in sunlight greenhouse of the arid areas in Ningxia,the soil water was measured and the water consumption of crop was calculated.[Result]When irrigation amount was 563 mm,the water consumption as a whole gradually increased with the delay of growth period,reached peak during the thriving stage of fruit setting,and then gradually declined;in each treatment,the daily water consumption increased with the increasing of irrigation amount during each growth period.However,the consumption of soil moisture reduced with the significant increase of irrigation.563 mm of irrigation amount could meet the water requirements of cucumber and began to add water to soil,and water utilization efficiency could reach 33.4 kg/m3.[Conclusion]The research had provided theoretical basis for water management in the production process of greenhouse cucumber. 展开更多
关键词 GREENHOUSE CUCUMBER Irrigation amount water consumption water utilization efficiency
下载PDF
Growth, Yield and Water Use Effeciency of Forage <i>Sorghum</i>as Affected by Npk Fertilizer and Deficit Irrigation
7
作者 Mohamed M. Hussein Ashok K. Alva 《American Journal of Plant Sciences》 2014年第13期2134-2140,共7页
Drought stress (DS) is an important limiting factor for crop growth and production in some regions of the world. Limitation in water availability precludes optimal irrigation in some production regions. Therefore, inv... Drought stress (DS) is an important limiting factor for crop growth and production in some regions of the world. Limitation in water availability precludes optimal irrigation in some production regions. Therefore, investigations on the interaction of other factors to mitigate the DS to varying degree are important. Two field experiments were conducted in the experimental farm of the National Research Centre, Shalakan, Kalubia Governorate, Egypt, during 2004 and 2005 summer seasons to evaluate the interactions between N, P, K rates and optimal vs. deficit irrigation regimes on biomass yield as well as water use efficiency (WUE) of forage sorghum. Omission of the 4th irrigation significantly decreased the biomass of sorghum c.v. Pioneer, as compared to that of the plants receiving optimal irrigation or subject to omission of the 2nd irrigation. The biomass yield increased with an increase in NPK fertilizer rates. Plant height and leaf area also decreased by omitting the 2nd irrigation as compared to that of the plants under optimal irrigation, and further declined with omission of the 4th irrigation. The biomass of the plants (dry weight basis) that received the high N, P, K rates was greater by 26%, 29%, and 35% as compared to that of the plants that received no N, P, K fertilizers, under optimal irrigation, omission of the 2nd, and omission of the 4th irrigation, respectively. The corresponding increases in water use efficiency (based on fresh weight yield) were 37%, 42%, and 55%. 展开更多
关键词 Sorghum-Forage-Omitting of Irrigation-NPK fertilizer-Growth Yield-water Use Efficiency
下载PDF
Research on the Production Efficiency and Utilizing Rate of Potassium Fertilizer for Rape in Yunnan Province 被引量:3
8
作者 符明联 李根泽 +9 位作者 原小燕 程德荣 朱炫 魏生广 李红彦 彭识 雷元宽 贺斌 文和明 余绍伟 《Agricultural Science & Technology》 CAS 2011年第10期1490-1494,1512,共6页
[Objective] This study aimed at investigating the effects of consumption of potassium fertilizer on production and biological characteristics of rape and utilizing efficiency of potassium fertilizer.[Method] Taking 0 ... [Objective] This study aimed at investigating the effects of consumption of potassium fertilizer on production and biological characteristics of rape and utilizing efficiency of potassium fertilizer.[Method] Taking 0 kg/hm2 as control,nine consumptions of potassium fertilizer were designed for the experiment using single factor randomized block design with three replications and field experiment in nine rape-producing areas with different ecological types in Yunnan Province.[Result] Appropriately applying potassium fertilizer in Yunnan Province could improve the rapeseed production,the rape production could achieve 3 983-4 151 kg when applied 150-180 kg/hm2 of K2O,which had increased by 4.7-9.1% compared with the control and attained the peak in K165 treatment.When applied 1 kg of K2O,the rapeseed production could enhance 559 kg,the net profit could reach 1 229 yuan/hm2 and the partial productivity of potassium fertilizer could attain 31.32 kg/kg K2O and 3.7 kg/kg K2O,respectively.Applying potassium fertilizer could promote the growth of rape and increase rapeseed production.[Conclusion] The recommended optimal consumptions of potassium fertilizer with high production and high efficiency for rape in Yunnan Province were ranged between 150 and 180 kg K2O/hm2.However,comprehensively considering production and efficiency factors,the consumption of potassium fertilizer in Yunnan Province was around 73.9 kg/hm2,which should be appropriately increased to around 100.0 kg/hm2 in Longchuan,Yulong,Linxiang and other producing areas with similar conditions. 展开更多
关键词 RAPE Consumption of potassium fertilizer PRODUCTION Utilizing efficiency of potassium fertilizer
下载PDF
Effects of Increased Planting Density with ReducedNitrogen Application on Yield Formation and NitrogenUtilization of Autumn Maize 被引量:3
9
作者 ZHANG Meng PAN Gao-feng +4 位作者 HUANG Yi-qin HE Jun-ou FANG Xue-dong LIU Zhi-hui ZHAN Ming 《Agricultural Science & Technology》 CAS 2019年第6期1-13,共13页
With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield a... With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen. 展开更多
关键词 Autumn maize Planting density Nitrogen application rate YIELD Nitrogen fertilizer utilization efficiency
下载PDF
Advances in Research on the Approaches of Improving Water Utilization Efficiency in Rice 被引量:1
10
作者 ZHANGMing-sheng HUANGYou-zhong ZHANGGuo-ping 《Agricultural Sciences in China》 CAS CSCD 2005年第1期65-74,共10页
Water shortage is increasingly an important factor limiting the sustainable development of global economy, posing a hugethreat to social security and human existence. Water usage in agriculture accounts for about 70% ... Water shortage is increasingly an important factor limiting the sustainable development of global economy, posing a hugethreat to social security and human existence. Water usage in agriculture accounts for about 70% of total water consumptionin the world, and rice cultivation is in turn the largest water user, which accounts for about 50% of total water usage inagriculture. Therefore, it is quite important to improve water utilization efficiency to reduce water consumption in rice.Water stress causes severe inhibition of plant growth and development as well as yield reduction, however the extent ofinhibition or reduction varies greatly with the growth stages, duration and severity of stress, and plant genotypes. In rice,drought resistance and water utilization efficiency might be improved by developing stress resistant cultivars and conductingproper agronomic practices. It is hence imperative to determine the suitable criteria in morphological and physiologicaltraits for drought resistance and water utilization efficiency in conventional breeding of rice. At present, leaf rolling, leafwater potential and carbon isotope discrimination are commonly used criteria for the evaluation and identification ofgermplasm with high drought resistance or water utilization efficiency. With rapid development of molecular biology,marker-assisted selection has been used in rice breeding against water stress. In this review, therefore, the agronomicaspect of water saving techniques such as selection of suitable rice cultivars, planting pattern, mulching, deficit irrigationand alternative drying and moist irrigation are discussed and effective approaches are also recommended. 展开更多
关键词 water management water-SAVING RICE Drought-resistance water utilization efficiency
下载PDF
Experimental study on water-saving and emission-reduction effects of controlled drainage technology 被引量:4
11
作者 Meng-hua Xiao Xiu-jun Hu Lin-lin Chu 《Water Science and Engineering》 EI CAS CSCD 2015年第2期114-120,共7页
Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, ... Field experiments and laboratory analysis were carried out to determine the effects of controlled drainage(CTD) and conventional drainage(CVD) technologies on drainage volume, concentrations of NH4^+ -N, NO3^-N, and total phosphorus(TP), nitrogen and phosphorus losses, rice yield,and water utilization efficiency. Results show that CTD technology can effectively reduce drainage times and volume; NH4^+ -N, NO3^-N, and TP concentrations, from the first to the fourth day after four rainstorms decreased by 28.7%e46.7%, 37.5%e47.5%, and 22.7e31.2%, respectively,with CTD. These are significantly higher rates of decrease than those observed with CVD. CTD can significantly reduce nitrogen and phosphorus losses in field drainage, compared with CVD; the reduction rates observed in this study were, respectively, 66.72%, 55.56%, and 42.81% for NH4^+ -N, NO3^-N, and TP. Furthermore, in the CTD mode, the rice yield was cut slightly. In the CVD mode, the water production efficiencies in unit irrigation water quantity, unit field water consumption, and unit evapotranspiration were, respectively, 0.85, 0.48, and 1.22 kg/m^3, while in the CTD mode they were 2.91, 0.84, and 1.61 kg/m^3 din other words, 3.42, 1.75, and 1.32 times those of CVD. Furthermore, the results of analysis of variance(ANOVA) show that the indicators in both the CVD and CTD modes, including the concentrations of NH4^+ -N, NO3^-N, and TP, the losses of NH4^+ -N, NO3^-N, and TP, irrigation water quantity, and water consumption, showed extremely significant differences between the modes, but the rice yield showed no significant difference. 展开更多
关键词 Controlled drainage Nitrogen Phosphorus Rice yield Drainage volume water utilization efficiency
下载PDF
Effects of Combined Organic-inorganic Fertilization on Quality and Water Use Efficiency of Spring Maize under Equal Nitrogen Fertilization 被引量:2
12
作者 Defeng WU 《Asian Agricultural Research》 2020年第5期42-46,共5页
The experiment was conducted in the abandoned land of Liangjia Village,Huayin City,Shaanxi Province from April to September 2019.The experimental crop was spring maize.A total of six treatments were set up in a random... The experiment was conducted in the abandoned land of Liangjia Village,Huayin City,Shaanxi Province from April to September 2019.The experimental crop was spring maize.A total of six treatments were set up in a randomized block design.The moisture content of the top 0-60 cm soil was determined regularly,and the yield and quality indices of maize at maturity were checked.The results show that:(i)combined organic-inorganic fertilization increased the yield of spring maize by 3%-8%.(ii)Compared with CK,fertilization treatments significantly improved the water use efficiency of spring maize,with an increase of 59.2%.The average water use efficiency of three combined organic-inorganic fertilization treatments was 27.81 kg/(ha·mm).Compared with CON,combined application of organic and inorganic fertilizers significantly improved the water use efficiency of spring maize,with an increase of 12.5%.(iii)The combined application of organic and inorganic fertilizers increased the moisture,total starch,crude protein and crude fat contents,and reduced crude fiber content of maize kernels.However,with the increase of the proportion of organic fertilizer,the crude protein content of maize kernels decreased.(iv)Yield of spring maize showed a significant parabolic relationship with soil water consumption.In summary,70%inorganic fertilizer+30%organic fertilizer is a scientific and reasonable way of fertilization. 展开更多
关键词 Equal nitrogen fertilization Combined organic-inorganic fertilization MAIZE QUALITY water use efficiency
下载PDF
Balanced Fertilization and the Effect of Fertilization on Water Use Efficiency of Upland Winter Wheat in Western Henan, China
13
作者 LI GUIBAO LIU CHUNMING +4 位作者 SUN KEGANG BAO DEJUN ZHANG GUILAN LEI QUANKUI YAO YUQING and BU LIJIE (Soil and Fertilizer Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002 China)(Luoyang Institute of Agricultural Sciencea, Luoyang 471022 Ch 《Pedosphere》 SCIE CAS CSCD 1998年第4期361-366,共6页
A study on balanced fertilization was conducted by means of long-term field experiments, and a convenient table for balanced fertilization was compiled. The experimental results about the effect of fertilization on wa... A study on balanced fertilization was conducted by means of long-term field experiments, and a convenient table for balanced fertilization was compiled. The experimental results about the effect of fertilization on water use efficiency of upland wheat showed that the input of inorganic fertilizer should be reduced in dry years. 展开更多
关键词 balanced fertilization UPLand water use efficiency WHEAT
下载PDF
Experiment of Water Soluble Fertilizers Containing Humic Acid in Tomato Planting
14
作者 Juqing GE 《Asian Agricultural Research》 2022年第7期58-59,62,共3页
As a natural macromolecular organic compound,humic acid can promote plant growth.Water soluble humic acid fertilizers refer to liquid or solid water soluble fertilizers made by adding appropriate amounts of nitrogen,p... As a natural macromolecular organic compound,humic acid can promote plant growth.Water soluble humic acid fertilizers refer to liquid or solid water soluble fertilizers made by adding appropriate amounts of nitrogen,phosphorus,potassium macroelements or zinc,boron,iron,molybdenum,manganese,copper and other trace elements or organic matter,based on humic acid in the required proportions for plant growth.In order to verify the application effect of humic acid containing water soluble fertilizer produced by Tai’an Gold Land Chemical Co.,Ltd.,in tomato production in Daiyue District,Tai’an City,a fertilizer effect application experiment of humic acid containing water soluble fertilizer on tomato planting was specially carried out.The results showed that the water soluble fertilizer containing humic acid could obviously improve the agronomic characters of tomato;the yield was significantly increased;the effect of increasing the income of tomato growers was obvious. 展开更多
关键词 water soluble fertilizers containing humic acid TOMATO fertilizer efficiency
下载PDF
The Relationship between Water Resources Use Efficiency and Scientific and Technological Innovation Level: Case Study of Yangtze River Basin in China
15
作者 Guangming Yang Qingqing Gui +2 位作者 Junyue Liu Fengtai Zhang Siyi Cheng 《Journal of Environmental & Earth Sciences》 2023年第2期15-35,共21页
The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE an... The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development. 展开更多
关键词 water resource utilization efficiency(WUE) Scientific and technological innovation level(STI) Coupling coordination Interactive response Yangtze River Basin
下载PDF
Urban Water Resource Utilization Efficiency in China 被引量:14
16
作者 SHI Tiange ZHANG Xiaolei +1 位作者 DU Hongru SHI Hui 《Chinese Geographical Science》 SCIE CSCD 2015年第6期684-697,共14页
The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis ... The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis (SBM-DEA) has been widely used in energy efficiency and environmental efficiency analyses in recent years. Based on this model, data from 316 cities were examined and a category method was employed involving three different sorting techniques to empirically evaluate the efficiency of urban water re- source utilization in China between 2000 and 2012. The overall efficiency (OE) of urban water resource utilization in China was initially low, but has improved over the past decade. The scale efficiency (SE) was higher than the pure technological efficiency (PTE); PTE is a major determining factor of OE, and has had an increasingly significant effect. The efficiency of water resource utilization varied ac- cording to the region, urban scale, and economic function. The OE score for the eastern China was higher than for the rest of the region, and the OE score for the western China was higher than for the central China. The OE score for urban water resource utilization has improved with urban expansion, except in the case of small cities. The SE showed an inverted U-shaped' trend with increasing urban expansion. The OE of urban water utilization in comprehensive functional cities was greater than in economic specialization cities, and was greater in heavy industry specialization cities than in other specialization cities. This study contributes to the field of urban water resource management by examining variations in efficiency with urban ~ezle 展开更多
关键词 urban water resource utilization efficiency urban scale undesirable outputs a slacks-based measure for data envelopmentanalysis (SBM-DEA) China
下载PDF
Effects of drip irrigation modes on growth and physiological characteristics of Arabica coffee under different N levels 被引量:3
17
作者 HAO Kun LIU Xiaogang +4 位作者 HAN Zhihui WU Helin YU Ning LIU Yanwei YANG Qiliang 《排灌机械工程学报》 EI CSCD 北大核心 2017年第10期912-920,共9页
The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI)... The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency. 展开更多
关键词 Arabica coffee drip irrigation modes nitrogen fertilizer photosynthetic characteristics biomass accumulation irrigation water use efficiency
下载PDF
Optimizing water and nitrogen inputs for winter wheat cropping system on the Loess Plateau,China 被引量:8
18
作者 QiuPing FU QuanJiu WANG +1 位作者 XinLei SHEN Jun FAN 《Journal of Arid Land》 SCIE CSCD 2014年第2期230-242,共13页
Optimal use of water and fertilizers can enhance winter wheat yield and increase the efficiencies of water and fertilizer usage in dryland agricultural systems. In order to optimize water and nitrogen (N) management... Optimal use of water and fertilizers can enhance winter wheat yield and increase the efficiencies of water and fertilizer usage in dryland agricultural systems. In order to optimize water and nitrogen (N) management for winter wheat, we conducted field experiments from 2006 to 2008 at the Changwu Agro-ecological Experimental Station of the Chinese Academy of Sciences on the Loess Plateau, China. Regression models of wheat yield and evapotranspiration (ET) were established in this study to evaluate the water and fertilizer coupling effects and to determine the optimal coupling domain. The results showed that there was a positive effect of water and N fertilizer on crop yield, and optimal irrigation and N inputs can significantly increase the yield of winter wheat. In the drought year (2006-2007), the maximum yield (Yma~) of winter wheat was 9.211 t/hm2 for the treatment with 324 mm irriga- tion and 310 kg/hm2 N input, and the highest water use efficiency (WUE) of 16.335 kg/(hm2.mm) was achieved with 198 mm irrigation and 274 kg/hm2 N input. While in the normal year (2007-2008), the maximum winter wheat yield of 10.715 t/hm2 was achieved by applying 318 mm irrigation and 291 kg/hm2 N, and the highest WUE was 18.69 kg/(hm2.mm) with 107 mm irrigation and 256 kg/hm2 N input. Crop yield and ET response to irrigation and N inputs followed a quadratic and a line function, respectively. The optimal coupling domain was determined using the elas- ticity index (El) and its expression in the water-N dimensions, and was represented by an ellipse, such that the global maximum WUE (WUErnax) and Ymax values corresponded to the left and right end points of the long axis, respectively. Considering the aim to get the greatest profit in practice, the optimal coupling domain was represented by the lower half of the ellipse, with the Yma~ and WUE^ax on the two end points of the long axis. Overall, we found that the total amount of irrigation for winter wheat should not exceed 324 ram. In addition, our optimal coupling domain visually reflects the optimal range of water and N inputs for the maximum winter wheat yield on the Loess Plateau, and it may also provide a useful reference for identifying appropriate water and N inputs in agricultural applications. 展开更多
关键词 water-fertilizer coupling water use efficiency optimal coupling domain yield winter wheat
下载PDF
Maize grain yield and water use efficiency in relation to climatic factors and plant population in northern China
19
作者 LIU Yue-e HOU Peng +5 位作者 HUANG Gui-rong ZHONG Xiu-li LI Hao-ru ZHAO Jiu-ran LI Shao-kun MEI Xu-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第12期3156-3169,共14页
Water scarcity has become a limiting factor for increasing crop production.Finding ways to improve water use efficiency(WUE)has become an urgent task for Chinese agriculture.To understand the response of different mai... Water scarcity has become a limiting factor for increasing crop production.Finding ways to improve water use efficiency(WUE)has become an urgent task for Chinese agriculture.To understand the response of different maize populations to changes in precipitation and the effects of changes in maize populations on WUE,this study conducted maize population experiments using maize hybrids with different plant types(compact and semi compact)and different planting densities at 25 locations across China.It was found that,as precipitation increased across different locations,maize grain yield first increased and then decreased,while WUE decreased significantly.Analyzing the relationship between WUE and the main climatic factors,this study found that WUE was significantly and negatively correlated with precipitation(R(daily mean precipitation)and R(accumulated precipitation))and was positively correlated with temperature(TM(daily mean maximum temperature),T_(M-m)(T_(m),daily mean minimum temperature)and GDD(growing degree days))and solar radiation(Ra(daily mean solar radiation)and Ra(accumulated solar radiation))over different growth periods.Significant differences in maize grain yield,WUE and precipitation were found at different planting densities.The population densities were ranked as follows according to maize grain yield and WUE based on the multi-site experiment data:60000 plants ha^(-1)(P_(2))>90000 plants ha^(-1)(P_(3))>30000 plants ha^(-1)(P_(1)).Further analysis showed that,as maize population increased,water consumption increased significantly while soil evaporation decreased significantly.Significant differences were found between the WUE of ZD958(compact type)and that of LD981(semi-compact type),as well as among the WUE values at different planting densities.In addition,choosing the optimum hybrid and planting density increased WUE by 21.70 and 14.92%,respectively,which showed that the hybrid played a more significant role than the planting density in improving WUE.Therefore,choosing drought-resistant hybrids could be more effective than increasing the planting density to increase maize grain yield and WUE in northern China.Comprehensive consideration of climatic impacts,drought-resistant hybrids(e.g.,ZD958)and planting density(e.g.,60000 plants ha^(-1))is an effective way to increase maize grain yield and WUE across different regions of China. 展开更多
关键词 MAIZE climatic factor water utilization characteristics water use efficiency HYBRIDS planting density
下载PDF
中国化肥减量增效行动与技术研究
20
作者 李娜 田云龙 +3 位作者 张蕾 王胜涛 朱昌雄 李红娜 《农业资源与环境学报》 北大核心 2025年第1期1-10,共10页
化肥是当代农业的重要生产资料,在农业生产中不可替代,但化肥的不合理施用会对环境造成潜在威胁。本文对我国近年来出台的系列化肥减量增效行动和政策、国家统计年鉴数据和相关的研究进展进行了梳理总结。结果表明:我国的化肥减量增效... 化肥是当代农业的重要生产资料,在农业生产中不可替代,但化肥的不合理施用会对环境造成潜在威胁。本文对我国近年来出台的系列化肥减量增效行动和政策、国家统计年鉴数据和相关的研究进展进行了梳理总结。结果表明:我国的化肥减量增效行动已初具成效,表现为2015—2022年的8年间,化肥用量减少15.7%,而粮食增产3.9%;化肥施用结构趋向合理化,表现为氮肥用量持续减少,复合肥用量持续增加;我国的化肥施用强度也有所下降,2022年化肥施用强度(298.8 kg·hm^(-2))比2015年减少62.2 kg·hm^(-2),但施肥强度仍有进一步减量空间;化肥减量、养分利用、元素循环转化等方面的研究有望为提高化肥利用率、推进减量增效行动提供基础科学依据。本文为我国进一步开展科学的化肥减量增效行动提出政策和管理建议,以期为我国的化肥减量增效行动的现状和未来的行动方针提供科学依据和参考。 展开更多
关键词 化肥 氮肥利用率 减量增效 有机肥替代 施肥强度
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部