In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is al...In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.展开更多
is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t k...is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t know the matrix T<sub>1,n</sub>,but weknow all eigenvalues of matrix T<sub>1,k-1</sub>,all eigenvalues of matrix T<sub>k+1,k</sub>,and all eigenvaluesof matrix T<sub>1,n</sub> could we construct the matrix T<sub>1,n</sub>.Let μ<sub>1</sub>,μ<sub>2</sub>,…,μ<sub>k-1</sub>,μ<sub>k</sub>,μ<sub>k+1</sub>,…,μ<sub>n-1</sub>,展开更多
In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywher...In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.展开更多
The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th...The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.展开更多
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an ...In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.展开更多
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and ...In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum.Numerical examples are presented in each case to illustrate these scenarios.It was established that given a prescribed spectral datum and it multiplies,then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.展开更多
Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the c...Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.展开更多
Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. The experimental high-throughput measurement of levels of biochemical components, like metabolites and pr...Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. The experimental high-throughput measurement of levels of biochemical components, like metabolites and proteins, has become an integral part for characterization of biological systems. Yet, strategies of mathematical modeling to functionally integrate resulting data sets is still challenging. In plant biology, regulatory strategies that determine the metabolic output of metabolism as a response to changes in environmental conditions are hardly traceable by intuition. Mathematical modeling has been shown to be a promising approach to address such problems of plant-environment interaction promoting the comprehensive understanding of plant biochemistry and physiology. In this context, we recently published an inversely calculated solution for first-order partial derivatives, i.e. the Jacobian matrix, from experimental high-throughput data of a plant biochemical model system. Here, we present a biomathematical strategy, comprising 1) the inverse calculation of a biochemical Jacobian;2) the characterization of the associated eigenvalues and 3) the interpretation of the results with respect to biochemical regulation. Deriving the real parts of eigenvalues provides information about the stability of solutions of inverse calculations. We found that shifts of the eigenvalue real part distributions occur together with metabolic shifts induced by short-term and long-term exposure to low temperature. This indicates the suitability of mathematical Jacobian characterization for recognizing perturbations in the metabolic homeostasis of plant metabolism. Together with our previously published results on inverse Jacobian calculation this represents a comprehensive strategy of mathematical modeling for the analysis of complex biochemical systems and plant-environment interactions from the molecular to the ecosystems level.展开更多
Let J. be an n × n Jacobi matrix and Al λ1 ,..',λ2n distinct real numbers. The following problem is well known. Under what condition does there exist a 2n × 2n Jacobi matrix J. such that J,. has eige...Let J. be an n × n Jacobi matrix and Al λ1 ,..',λ2n distinct real numbers. The following problem is well known. Under what condition does there exist a 2n × 2n Jacobi matrix J. such that J,. has eigenvalues λ1, ..λ2n A. and its leading n × n principal submatrix is exactly Jn In this paper a condition for the solubility of the problem is given. The dependence of J2n on the given data is shown to be continuous.展开更多
Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk...Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper.展开更多
In this paper, we discuss an inverse eigenvalue problem for constructing a 2n × 2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a g...In this paper, we discuss an inverse eigenvalue problem for constructing a 2n × 2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a given Jacobi matrix. A new sufficient and necessary condition for the solvability of the above problem is given in this paper. Furthermore, we present a new algorithm and give some numerical results.展开更多
The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring...The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.
基金Project 19771020 supported by National Science Foundation of China
文摘is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t know the matrix T<sub>1,n</sub>,but weknow all eigenvalues of matrix T<sub>1,k-1</sub>,all eigenvalues of matrix T<sub>k+1,k</sub>,and all eigenvaluesof matrix T<sub>1,n</sub> could we construct the matrix T<sub>1,n</sub>.Let μ<sub>1</sub>,μ<sub>2</sub>,…,μ<sub>k-1</sub>,μ<sub>k</sub>,μ<sub>k+1</sub>,…,μ<sub>n-1</sub>,
文摘In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.
基金This work is supported by the NSF of China (10471039, 10271043) and NSF of Zhejiang Province (M103087).
文摘The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.
文摘In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.
文摘In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum.Numerical examples are presented in each case to illustrate these scenarios.It was established that given a prescribed spectral datum and it multiplies,then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.
基金This work is supported by the Natural Science Foundation of Fujian Province of China (No. Z0511010)the Natural Science Foundation of China (No. 10571012).
文摘Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.
文摘Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. The experimental high-throughput measurement of levels of biochemical components, like metabolites and proteins, has become an integral part for characterization of biological systems. Yet, strategies of mathematical modeling to functionally integrate resulting data sets is still challenging. In plant biology, regulatory strategies that determine the metabolic output of metabolism as a response to changes in environmental conditions are hardly traceable by intuition. Mathematical modeling has been shown to be a promising approach to address such problems of plant-environment interaction promoting the comprehensive understanding of plant biochemistry and physiology. In this context, we recently published an inversely calculated solution for first-order partial derivatives, i.e. the Jacobian matrix, from experimental high-throughput data of a plant biochemical model system. Here, we present a biomathematical strategy, comprising 1) the inverse calculation of a biochemical Jacobian;2) the characterization of the associated eigenvalues and 3) the interpretation of the results with respect to biochemical regulation. Deriving the real parts of eigenvalues provides information about the stability of solutions of inverse calculations. We found that shifts of the eigenvalue real part distributions occur together with metabolic shifts induced by short-term and long-term exposure to low temperature. This indicates the suitability of mathematical Jacobian characterization for recognizing perturbations in the metabolic homeostasis of plant metabolism. Together with our previously published results on inverse Jacobian calculation this represents a comprehensive strategy of mathematical modeling for the analysis of complex biochemical systems and plant-environment interactions from the molecular to the ecosystems level.
文摘Let J. be an n × n Jacobi matrix and Al λ1 ,..',λ2n distinct real numbers. The following problem is well known. Under what condition does there exist a 2n × 2n Jacobi matrix J. such that J,. has eigenvalues λ1, ..λ2n A. and its leading n × n principal submatrix is exactly Jn In this paper a condition for the solubility of the problem is given. The dependence of J2n on the given data is shown to be continuous.
基金Project 19771020 supported by National Science Foundation of China.
文摘Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper.
基金This work was supported by The National Natural Science Foundation of China, under grant 10271074.
文摘In this paper, we discuss an inverse eigenvalue problem for constructing a 2n × 2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a given Jacobi matrix. A new sufficient and necessary condition for the solvability of the above problem is given in this paper. Furthermore, we present a new algorithm and give some numerical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results.