期刊文献+
共找到164篇文章
< 1 2 9 >
每页显示 20 50 100
A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM
1
作者 侯文渊 蒋尔雄 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2005年第2期115-127,共13页
In this paper we will analyze the perturbation quality for a new algorithm of the (k) Jacobi matrix inverse eigenvalue problem.
关键词 稳定性分析 jacobi矩阵 特征值 反转问题
下载PDF
A new algorithm for an inverse eigenvalue problem on Jacobi matrices
2
作者 徐映红 蒋尔雄 《Journal of Shanghai University(English Edition)》 CAS 2008年第4期289-293,共5页
In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is al... In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given. 展开更多
关键词 jacobi matrix inverse problem eigenvalue
下载PDF
AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES
3
作者 Jiang Erxiong(Dept.of Math.,shanghai University,Shanghai 200436,PRC) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第S1期3-4,共2页
is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t k... is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t know the matrix T<sub>1,n</sub>,but weknow all eigenvalues of matrix T<sub>1,k-1</sub>,all eigenvalues of matrix T<sub>k+1,k</sub>,and all eigenvaluesof matrix T<sub>1,n</sub> could we construct the matrix T<sub>1,n</sub>.Let μ<sub>1</sub>,μ<sub>2</sub>,…,μ<sub>k-1</sub>,μ<sub>k</sub>,μ<sub>k+1</sub>,…,μ<sub>n-1</sub>, 展开更多
关键词 In AN inverse eigenvalue problem FOR jacobi MATRICES MATH
下载PDF
THE UNSOLVABILITY OF GENERALIZED INVERSE EIGENVALUE PROBLEMS ALMOST EVERYWHERE
4
作者 戴华 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1996年第2期217-227,共11页
In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywher... In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere. 展开更多
关键词 matrix PENCIL inverse eigenvalue problem unsolvability.
下载PDF
THE BI-SELF-CONJUGATE AND NONNEGATIVE DEFINITE SOLUTIONS TO THE INVERSE EIGENVALUE PROBLEM OF QUATERNION MATRICES
5
作者 褚玉明 《Acta Mathematica Scientia》 SCIE CSCD 2005年第3期492-504,共13页
The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th... The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given. 展开更多
关键词 CONJUGATE inverse eigenvalue problem quaternion matrix
下载PDF
Generalized Inverse Eigenvalue Problem for Centrohermitian Matrices
6
作者 刘仲云 谭艳祥 田兆录 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期448-454,共7页
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co... In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it. 展开更多
关键词 centrohermitian matrix generalized inverse eigenvalue problem optimal approximation.
下载PDF
On Open Problems of Nonnegative Inverse Eigenvalues Problem
7
作者 Jun-Liang Wu 《Advances in Pure Mathematics》 2011年第4期128-132,共5页
In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an ... In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable. 展开更多
关键词 inverse eigenvalueS problem NONNEGATIVE inverse eigenvalueS problem SOLVABILITY NONNEGATIVE matrix Spectrum of matrix
下载PDF
Solvability conditions for algebra inverse eigenvalue problem over set of anti-Hermitian generalized anti-Hamiltonian matrices
8
作者 ZHANG Zhong-zhi HAN Xu-li 《Journal of Central South University of Technology》 2005年第z1期294-297,共4页
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H... By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction. 展开更多
关键词 anti-Hermitian generalized anti-Hamiltonian matrix ALGEBRA inverse eigenvalue problem optimal approximation
下载PDF
Solubility Existence of Inverse Eigenvalue Problem for a Class of Singular Hermitian Matrices
9
作者 Emmanuel Akweittey Kwasi Baah Gyamfi Gabriel Obed Fosu 《Journal of Mathematics and System Science》 2019年第5期119-123,共5页
In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and ... In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum.Numerical examples are presented in each case to illustrate these scenarios.It was established that given a prescribed spectral datum and it multiplies,then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists. 展开更多
关键词 SINGULAR HERMITIAN matrices inverse eigenvalue problem RANk of a matrix.
下载PDF
A Solution of Inverse Eigenvalue Problems for Unitary Hessenberg Matrices
10
作者 Feng Li Lu Lin 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第2期131-139,共9页
Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the c... Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively. 展开更多
关键词 Hessenberg酉阵 Schur参数 逆特征值问题 子对角元素
下载PDF
Eigenvalues of Jacobian Matrices Report on Steps of Metabolic Reprogramming in a Complex Plant-Environment Interaction
11
作者 Thomas Nagele Wolfram Weckwerth 《Applied Mathematics》 2013年第8期44-49,共6页
Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. The experimental high-throughput measurement of levels of biochemical components, like metabolites and pr... Mathematical modeling of biochemical systems aims at improving the knowledge about complex regulatory networks. The experimental high-throughput measurement of levels of biochemical components, like metabolites and proteins, has become an integral part for characterization of biological systems. Yet, strategies of mathematical modeling to functionally integrate resulting data sets is still challenging. In plant biology, regulatory strategies that determine the metabolic output of metabolism as a response to changes in environmental conditions are hardly traceable by intuition. Mathematical modeling has been shown to be a promising approach to address such problems of plant-environment interaction promoting the comprehensive understanding of plant biochemistry and physiology. In this context, we recently published an inversely calculated solution for first-order partial derivatives, i.e. the Jacobian matrix, from experimental high-throughput data of a plant biochemical model system. Here, we present a biomathematical strategy, comprising 1) the inverse calculation of a biochemical Jacobian;2) the characterization of the associated eigenvalues and 3) the interpretation of the results with respect to biochemical regulation. Deriving the real parts of eigenvalues provides information about the stability of solutions of inverse calculations. We found that shifts of the eigenvalue real part distributions occur together with metabolic shifts induced by short-term and long-term exposure to low temperature. This indicates the suitability of mathematical Jacobian characterization for recognizing perturbations in the metabolic homeostasis of plant metabolism. Together with our previously published results on inverse Jacobian calculation this represents a comprehensive strategy of mathematical modeling for the analysis of complex biochemical systems and plant-environment interactions from the molecular to the ecosystems level. 展开更多
关键词 inverse problems jacobian matrix eigenvalue Plant Systems Biology Metabolomics
下载PDF
ON THE CONSTRUCTION OF A JACOBI MATRIX FROM ITS SPECTRUM AND A SUBMATRIX 被引量:1
12
作者 Dai Hua (Department of Applied Mathematics ,Physics & Mechanics ,NUAA29Yudao Street ,Nanjing 210016 ,P.R.China) 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1994年第1期55-59,共5页
Let J. be an n × n Jacobi matrix and Al λ1 ,..',λ2n distinct real numbers. The following problem is well known. Under what condition does there exist a 2n × 2n Jacobi matrix J. such that J,. has eige... Let J. be an n × n Jacobi matrix and Al λ1 ,..',λ2n distinct real numbers. The following problem is well known. Under what condition does there exist a 2n × 2n Jacobi matrix J. such that J,. has eigenvalues λ1, ..λ2n A. and its leading n × n principal submatrix is exactly Jn In this paper a condition for the solubility of the problem is given. The dependence of J2n on the given data is shown to be continuous. 展开更多
关键词 numerical ALGEBRA inverse problem CHARACTERISTIC value jacobi matrix
下载PDF
AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES 被引量:10
13
作者 Er-xiong Jiang (Department of Mathematics, Shanghai University, Shanghai 200436, China) 《Journal of Computational Mathematics》 SCIE CSCD 2003年第5期569-584,共16页
Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk... Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper. 展开更多
关键词 Symmetric tridiagonal matrix jacobi matrix eigenvalue problem inverse eigenvalue problem.
原文传递
AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES 被引量:5
14
作者 Haixia Liang Erxiong Jiang 《Journal of Computational Mathematics》 SCIE EI CSCD 2007年第5期620-630,共11页
In this paper, we discuss an inverse eigenvalue problem for constructing a 2n × 2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a g... In this paper, we discuss an inverse eigenvalue problem for constructing a 2n × 2n Jacobi matrix T such that its 2n eigenvalues are given distinct real values and its leading principal submatrix of order n is a given Jacobi matrix. A new sufficient and necessary condition for the solvability of the above problem is given in this paper. Furthermore, we present a new algorithm and give some numerical results. 展开更多
关键词 Symmetric tridiagonal matrix jacobi matrix eigenvalue problem inverse eigenvalue problem.
原文传递
一类周期伪Jacobi矩阵的逆特征值问题
15
作者 胡文宇 徐伟孺 曾雨 《数学物理学报(A辑)》 CSCD 北大核心 2024年第3期761-770,共10页
该文考虑了一类周期伪Jacobi矩阵的逆特征值问题,该矩阵依赖于一个符号算子,该符号算子分量的变化将会对整个矩阵的谱造成很大的扰动.于是根据该矩阵特征方程根的分布情况来讨论其特征值的分布.当该符号算子中最后一个分量发生变化时,... 该文考虑了一类周期伪Jacobi矩阵的逆特征值问题,该矩阵依赖于一个符号算子,该符号算子分量的变化将会对整个矩阵的谱造成很大的扰动.于是根据该矩阵特征方程根的分布情况来讨论其特征值的分布.当该符号算子中最后一个分量发生变化时,给出了其逆特征值问题可解的充要条件和具体的构造过程.最后,通过数值算例验证了所给算法的有效性和可行性. 展开更多
关键词 周期 jacobi 矩阵 谱分布 重构算法 逆特征值问题
下载PDF
Solution of an inverse problem for“fixed-fixed”and“fixed-free”spring-mass systems
16
作者 吴笑千 蒋尔雄 《Journal of Shanghai University(English Edition)》 CAS 2007年第1期27-32,共6页
The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring... The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results. 展开更多
关键词 spring-mass system inverse problem in vibration inverse eigenvalue problem jacobi matrix natural frequency
下载PDF
子周期Jacobi矩阵特征值反问题 被引量:3
17
作者 邓远北 罗青云 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期89-92,共4页
讨论了一类由谱数据构造子周期Jacobi矩阵的特征值反问题,以及子周期Jacobi矩阵的相关性质.得到了问题有解的充分必要条件以及有唯一解的充分必要条件,并且给出了可行稳定的数值算法.
关键词 反问题 特征值问题 周期jacobi矩阵 子周期jacobi矩阵
下载PDF
一类广义Jacobi矩阵的逆特征值问题 被引量:3
18
作者 孟纯军 姜婷婷 《湖南师范大学自然科学学报》 CAS 北大核心 2017年第2期76-80,共5页
本文研究了一类广义Jacobi矩阵的逆特征值问题,给出了该问题有解的充要条件,并讨论了解的唯一性.进一步,本文给出算法计算该问题的解,数值实例说明算法是行之有效的.
关键词 jacobi矩阵 广义jacobi矩阵 特征值 逆特征值问题
下载PDF
一类Jacobi矩阵特征值反问题 被引量:4
19
作者 姚承勇 戴华 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2002年第3期211-215,共5页
给定三个互异实数 α,β,γ及三个不同的非零实向量 x=( x1 ,x2 ,… ,xn) T,y=( y1 ,y2 ,… ,yn) T,z=( z1 ,z2 ,… ,zn) T,构造 n阶 Jacobi矩阵 J使 ( α,x) ,( β,y) ,( γ,z)是 J的第 p,q,r个特征对。给出了这一类
关键词 jacobi矩阵 特征值 反问题 特征向量
下载PDF
广义Jacobi矩阵特征值反问题 被引量:3
20
作者 李志斌 赵鑫鑫 李伟 《大连交通大学学报》 CAS 2008年第4期6-10,共5页
提出广义Jacobi矩阵特征值反问题,也就是次对角线元素乘积为正的Jacobi矩阵的特征值反问题,问题IEPGJM:①给定两个互异实数λ,μ(λ<μ)和两个n维非零实向量x,y,求n阶实广义Jacobi矩阵J=[ai,bi,kbi],使得Jx=λx,Jy=μy;②给定3个互... 提出广义Jacobi矩阵特征值反问题,也就是次对角线元素乘积为正的Jacobi矩阵的特征值反问题,问题IEPGJM:①给定两个互异实数λ,μ(λ<μ)和两个n维非零实向量x,y,求n阶实广义Jacobi矩阵J=[ai,bi,kbi],使得Jx=λx,Jy=μy;②给定3个互异实数λ,μ,γ,和3个n维非零实向量x,y,z,求n阶实广义Jacobi矩阵J=[ai,bi,ci],使得Jx=λx,Jy=μy,Jz=γz.文中给出了问题解的表达式,提供了一个数值例子. 展开更多
关键词 广义jacobi矩阵 特征值 反问题
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部