From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of t...From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.展开更多
A new approach that bounds the largest eigenvalue of 3 × 3 correlation matrices is presented. Optimal bounds by given determinant and trace of the squared correlation matrix are derived and shown to be more strin...A new approach that bounds the largest eigenvalue of 3 × 3 correlation matrices is presented. Optimal bounds by given determinant and trace of the squared correlation matrix are derived and shown to be more stringent than the optimal bounds by Wolkowicz and Styan in specific cases.展开更多
We derive new and tight bounds about the eigenvalues and certain sums of the eigenvalues for the unique symmetric positive definite solutions of the discrete algebraic Riccati equations. These bounds considerably impr...We derive new and tight bounds about the eigenvalues and certain sums of the eigenvalues for the unique symmetric positive definite solutions of the discrete algebraic Riccati equations. These bounds considerably improve the existing ones and treat the cases that have been not discussed in the literature. Besides, they also result in completions for the available bounds about the extremal eigenvalues and the traces of the solutions of the discrete algebraic Riccati equations. We study the fixed-point iteration methods for com- puting the symmetric positive definite solutions of the discrete algebraic Riccati equations and establish their general convergence theory. By making use of the Schulz iteration to partially avoid computing the matrix inversions, we present effective variants of the fixed-point iterations, prove their monotone convergence and estimate their asymptotic convergence rates. Numerical results show that the modified fixed-point iteration methods are feasible and effective solvers for computing the symmetric positive definite solutions of the discrete algebraic Riccati equations.展开更多
We give a further study on B-tensors and introduce doubly B- tensors that contain B-tensors. We show that they have similar properties, including their decompositions and strong relationship with strictly (doubly) d...We give a further study on B-tensors and introduce doubly B- tensors that contain B-tensors. We show that they have similar properties, including their decompositions and strong relationship with strictly (doubly) diagonally dominated tensors. As an application, the properties of B-tensors are used to localize real eigenvalues of some tensors, which would be very useful in verifying the positive semi-definiteness of a tensor.展开更多
Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenv...Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenvalues of tensors with some sign structures called extended essentially nonnegative tensors (EEN-tensors), which includes nonnegative tensors as a subclass. In the even-order symmetric case, we first discuss the positive semi-definiteness of EEN-tensors, and show that a positive semi-definite EEN-tensor is a non- negative tensor or an M-tensor or the sum of a nonnegative tensor and an M-tensor, then we establish a checkable sufficient condition for the SOS decomposition of EEN-tensors. Finally, we present an efficient algorithm to compute the minimal H-eigenvalues of even-order symmetric EEN-tensors based on the SOS decomposition. Numerical experiments are given to show the efficiency of the proposed algorithm.展开更多
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such a...For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications.展开更多
文摘From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.
文摘A new approach that bounds the largest eigenvalue of 3 × 3 correlation matrices is presented. Optimal bounds by given determinant and trace of the squared correlation matrix are derived and shown to be more stringent than the optimal bounds by Wolkowicz and Styan in specific cases.
基金Acknowledgments. This work was started when the first author was visiting State Key Laboratory of Scientific/Engineering Computing, Chinese Academy of Sciences, during March-May in 2008. The support and hospitality from LSEC are very much appreciated. Supported by The National Basic Research Program (No. 2005CB321702), The China Outstanding Young Scientist Foundation (No. 10525102), and The National Natural Science Foundation for Innovative Research Groups (No. 11021101), P.R. China.
文摘We derive new and tight bounds about the eigenvalues and certain sums of the eigenvalues for the unique symmetric positive definite solutions of the discrete algebraic Riccati equations. These bounds considerably improve the existing ones and treat the cases that have been not discussed in the literature. Besides, they also result in completions for the available bounds about the extremal eigenvalues and the traces of the solutions of the discrete algebraic Riccati equations. We study the fixed-point iteration methods for com- puting the symmetric positive definite solutions of the discrete algebraic Riccati equations and establish their general convergence theory. By making use of the Schulz iteration to partially avoid computing the matrix inversions, we present effective variants of the fixed-point iterations, prove their monotone convergence and estimate their asymptotic convergence rates. Numerical results show that the modified fixed-point iteration methods are feasible and effective solvers for computing the symmetric positive definite solutions of the discrete algebraic Riccati equations.
文摘We give a further study on B-tensors and introduce doubly B- tensors that contain B-tensors. We show that they have similar properties, including their decompositions and strong relationship with strictly (doubly) diagonally dominated tensors. As an application, the properties of B-tensors are used to localize real eigenvalues of some tensors, which would be very useful in verifying the positive semi-definiteness of a tensor.
基金This work was done during the first authors' postdoctoral period in Qufu Normal University. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11601261, 11671228) and the Natural Science Foundation of Shandong Province (No. ZR2016AQ12).
文摘Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenvalues of tensors with some sign structures called extended essentially nonnegative tensors (EEN-tensors), which includes nonnegative tensors as a subclass. In the even-order symmetric case, we first discuss the positive semi-definiteness of EEN-tensors, and show that a positive semi-definite EEN-tensor is a non- negative tensor or an M-tensor or the sum of a nonnegative tensor and an M-tensor, then we establish a checkable sufficient condition for the SOS decomposition of EEN-tensors. Finally, we present an efficient algorithm to compute the minimal H-eigenvalues of even-order symmetric EEN-tensors based on the SOS decomposition. Numerical experiments are given to show the efficiency of the proposed algorithm.
文摘For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to high-quality preconditioning matrices for some typical matrices from the real-world applications.