We show that an (eventually) strongly increasing and positively homogeneous mapping T defined on a Banach space can be turned into an Edelstein contraction with respect to Hilbert's projective metric. By applying t...We show that an (eventually) strongly increasing and positively homogeneous mapping T defined on a Banach space can be turned into an Edelstein contraction with respect to Hilbert's projective metric. By applying the Edelstein contraction theorem, a nonlinear version of the famous Krein- Rutman theorem is presented, and a simple iteration process {T^kx/||T^kx||} ( x ∈ P^+) is given for finding a positive eigenvector with positive eigenvalue of T. In particular, the eigenvalue problem of a nonnegative tensor A can be viewed as the fixed point problem of the Edelstein contraction with respect to Hilbert's projective metric. As a result, the nonlinear Perron-Frobenius property of a nonnegative tensor A is reached easily.展开更多
基金Acknowledgements The authors would like to thank the anonymous referees for their useful comments and valuable suggestions. This work was supported by the Hong Kong Research Grant Council (Grant Nos. PolyU 501808, 501909, 502510, 502111) and the first author was supported partly by the National Natural Science Foundation of China (Grant Nos. 11071279, 11171094, 11271112).
文摘We show that an (eventually) strongly increasing and positively homogeneous mapping T defined on a Banach space can be turned into an Edelstein contraction with respect to Hilbert's projective metric. By applying the Edelstein contraction theorem, a nonlinear version of the famous Krein- Rutman theorem is presented, and a simple iteration process {T^kx/||T^kx||} ( x ∈ P^+) is given for finding a positive eigenvector with positive eigenvalue of T. In particular, the eigenvalue problem of a nonnegative tensor A can be viewed as the fixed point problem of the Edelstein contraction with respect to Hilbert's projective metric. As a result, the nonlinear Perron-Frobenius property of a nonnegative tensor A is reached easily.