Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using...Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis.展开更多
Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piec...Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated.展开更多
It is a NP-hard problem to schedule a list of nonresumable jobs to the available intervals of an availability-constrained single machine to minimize the scheduling length. This paper transformed this scheduling proble...It is a NP-hard problem to schedule a list of nonresumable jobs to the available intervals of an availability-constrained single machine to minimize the scheduling length. This paper transformed this scheduling problem into a variant of the variable-sized bin packing problem, put forward eight bin packing algorithms adapted from the classic one-dimensional bin packing problem and investigated their performances from both of the worst-case and the average-case scenarios. Analytical results show that the worst-case performance ratios of the algorithms are not less than 2. Experimental results for average cases show that the Best Fit and the Best Fit Decreasing algorithm outperform any others for independent and precedence-constrained jobs respectively.展开更多
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method...Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).展开更多
Aging diagnosis of batteries is essential to ensure that the energy storage systems operate within a safe region.This paper proposes a novel cell to pack health and lifetime prognostics method based on the combination...Aging diagnosis of batteries is essential to ensure that the energy storage systems operate within a safe region.This paper proposes a novel cell to pack health and lifetime prognostics method based on the combination of transferred deep learning and Gaussian process regression.General health indicators are extracted from the partial discharge process.The sequential degradation model of the health indicator is developed based on a deep learning framework and is migrated for the battery pack degradation prediction.The future degraded capacities of both battery pack and each battery cell are probabilistically predicted to provide a comprehensive lifetime prognostic.Besides,only a few separate battery cells in the source domain and early data of battery packs in the target domain are needed for model construction.Experimental results show that the lifetime prediction errors are less than 25 cycles for the battery pack,even with only 50 cycles for model fine-tuning,which can save about 90%time for the aging experiment.Thus,it largely reduces the time and labor for battery pack investigation.The predicted capacity trends of the battery cells connected in the battery pack accurately reflect the actual degradation of each battery cell,which can reveal the weakest cell for maintenance in advance.展开更多
基金supported in part by the National Key Research and Development Program of China(No.2022YFB3305403)Project of basic research funds for central universities(2022CDJDX006)+1 种基金Talent Plan Project of Chongqing(No.cstc2021ycjhbgzxm0295)National Natural Science Foundation of China(No.52111530194)。
文摘Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis.
基金supported in part by the National Key Research and Development Program of China(No.2017YFA0402300)National Natural Science Foundation of China(Nos.U2241288 and 11974359)Major Science and Technology Project of Gansu Province(No.22ZD6FA021-5)。
文摘Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated.
文摘It is a NP-hard problem to schedule a list of nonresumable jobs to the available intervals of an availability-constrained single machine to minimize the scheduling length. This paper transformed this scheduling problem into a variant of the variable-sized bin packing problem, put forward eight bin packing algorithms adapted from the classic one-dimensional bin packing problem and investigated their performances from both of the worst-case and the average-case scenarios. Analytical results show that the worst-case performance ratios of the algorithms are not less than 2. Experimental results for average cases show that the Best Fit and the Best Fit Decreasing algorithm outperform any others for independent and precedence-constrained jobs respectively.
文摘Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM).
基金Supported by National Natural Science Foundation of China(Grant Nos.51875054,U1864212)Graduate Research and Innovation Foundation of Chongqing+2 种基金China(Grant No.CYS20018)Chongqing Municipal Natural Science Foundation for Distinguished Young Scholars of China(Grant No.cstc2019jcyjjq X0016)Chongqing Science and Technology Bureau of China。
文摘Aging diagnosis of batteries is essential to ensure that the energy storage systems operate within a safe region.This paper proposes a novel cell to pack health and lifetime prognostics method based on the combination of transferred deep learning and Gaussian process regression.General health indicators are extracted from the partial discharge process.The sequential degradation model of the health indicator is developed based on a deep learning framework and is migrated for the battery pack degradation prediction.The future degraded capacities of both battery pack and each battery cell are probabilistically predicted to provide a comprehensive lifetime prognostic.Besides,only a few separate battery cells in the source domain and early data of battery packs in the target domain are needed for model construction.Experimental results show that the lifetime prediction errors are less than 25 cycles for the battery pack,even with only 50 cycles for model fine-tuning,which can save about 90%time for the aging experiment.Thus,it largely reduces the time and labor for battery pack investigation.The predicted capacity trends of the battery cells connected in the battery pack accurately reflect the actual degradation of each battery cell,which can reveal the weakest cell for maintenance in advance.