The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in ...The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave prop- agation are highlighted in high frequency domains. One im- portant result presented herein is the comparison between the first Bloch wave modes to the membrane and bend- ing/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homog- enized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retro- propagating Bloch wave modes with a negative group veloc- ity, and of the corresponding "retro-propagating" frequency bands.展开更多
We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full ve...We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.展开更多
Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynam...Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.展开更多
Combined with the supercell method, band structures of the anti-plane and in-plane modes of two-dimensional (2D) eight-fold solid-solid quasi-periodic phononic crystals (QPNCs) are calculated by using the finite e...Combined with the supercell method, band structures of the anti-plane and in-plane modes of two-dimensional (2D) eight-fold solid-solid quasi-periodic phononic crystals (QPNCs) are calculated by using the finite element method. The influences of the supercell on the band structure and the wave localization phenomenon are discussed based on the modal distributions. The reason for the appearance of unphysical bands is analyzed. The influence of the incidence angle on the transmission spectrum is also discussed.展开更多
This paper presents a closed-form algorithm for the steady-state response of elastic mecha-nisms. Based on an analytic expression of the initial conditions, the steady-state response can beobtained by just one cycle o...This paper presents a closed-form algorithm for the steady-state response of elastic mecha-nisms. Based on an analytic expression of the initial conditions, the steady-state response can beobtained by just one cycle of integration, thus the algorithm is of high efficiency. The algorithm isthen verified by comparing the computational results with the previously published experimental re-sults.展开更多
The dynamical formation of cavity in a hyper_elastic sphere composed of two materials with the incompressible strain energy function, subjected to a suddenly applied uniform radial tensile boundary dead_load, was stud...The dynamical formation of cavity in a hyper_elastic sphere composed of two materials with the incompressible strain energy function, subjected to a suddenly applied uniform radial tensile boundary dead_load, was studied following the theory of finite deformation dynamics. Besides a trivial solution corresponding to the homogeneous static state, a cavity forms at the center of the sphere when the tensile load is larger than its critical value. An exact differential relation between the cavity radius and the tensile land was obtained. It is proved that the evolution of cavity radius with time displays nonlinear periodic oscillations. The phase diagram for oscillation, the maximum amplitude, the approximate period and the critical load were all discussed.展开更多
Six draft sections (m specific areas of the Civil Code were submitted to the Standing Committee of the National People's Congress. China's top legislature, on August 27. One of them, the controversial draft on marr...Six draft sections (m specific areas of the Civil Code were submitted to the Standing Committee of the National People's Congress. China's top legislature, on August 27. One of them, the controversial draft on marriage and family, has aroused much debate among Internet users. It proposes a one-month cooling-off period for couples who wish to part ways and apply to divorce registration agencies. During the cooling-off month after a divorce registration agency receives a divorce application, either the husband or the wife can stop the application. After the cooling-off month, both sides are required to go to the agency for the divorce certificates. Failing to do so will mean the divorce application is canceled automatically.展开更多
The wave propagation problem in the nonlinear periodic mass-spring structure chain is analyzed using the symplectic mathematical method. The energy method is used to construct the dynamic equation, and the nonlinear d...The wave propagation problem in the nonlinear periodic mass-spring structure chain is analyzed using the symplectic mathematical method. The energy method is used to construct the dynamic equation, and the nonlinear dynamic equation is linearized using the small parameter perturbation method. Eigen-solutions of the symplectic matrix are used to analyze the wave propagation problem in nonlinear periodic lattices. Nonlinearity in the mass-spring chain, arising from the nonlinear spring stiffness effect, has profound effects on the overall transmission of the chain. The wave propagation characteristics are altered due to nonlinearity, and related to the incident wave intensity, which is a genuine nonlinear effect not present in the corresponding linear model. Numerical results show how the increase of nonlinearity or incident wave amplitude leads to closing of transmitting gaps. Comparison with the normal recursive approach shows effectiveness and superiority of the symplectic method for the wave propagation problem in nonlinear periodic structures.展开更多
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain...A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.展开更多
文摘The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave prop- agation are highlighted in high frequency domains. One im- portant result presented herein is the comparison between the first Bloch wave modes to the membrane and bend- ing/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homog- enized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retro- propagating Bloch wave modes with a negative group veloc- ity, and of the corresponding "retro-propagating" frequency bands.
文摘We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.
基金the National Natural Science Foundation of China(Nos.10772104 and10402018)the Shanghai Leading Academic Discipline Project(No.Y0103)
文摘Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11272043 and 10902012)the Project-sponsored by SRF for ROCS,SEM
文摘Combined with the supercell method, band structures of the anti-plane and in-plane modes of two-dimensional (2D) eight-fold solid-solid quasi-periodic phononic crystals (QPNCs) are calculated by using the finite element method. The influences of the supercell on the band structure and the wave localization phenomenon are discussed based on the modal distributions. The reason for the appearance of unphysical bands is analyzed. The influence of the incidence angle on the transmission spectrum is also discussed.
文摘This paper presents a closed-form algorithm for the steady-state response of elastic mecha-nisms. Based on an analytic expression of the initial conditions, the steady-state response can beobtained by just one cycle of integration, thus the algorithm is of high efficiency. The algorithm isthen verified by comparing the computational results with the previously published experimental re-sults.
文摘The dynamical formation of cavity in a hyper_elastic sphere composed of two materials with the incompressible strain energy function, subjected to a suddenly applied uniform radial tensile boundary dead_load, was studied following the theory of finite deformation dynamics. Besides a trivial solution corresponding to the homogeneous static state, a cavity forms at the center of the sphere when the tensile load is larger than its critical value. An exact differential relation between the cavity radius and the tensile land was obtained. It is proved that the evolution of cavity radius with time displays nonlinear periodic oscillations. The phase diagram for oscillation, the maximum amplitude, the approximate period and the critical load were all discussed.
文摘Six draft sections (m specific areas of the Civil Code were submitted to the Standing Committee of the National People's Congress. China's top legislature, on August 27. One of them, the controversial draft on marriage and family, has aroused much debate among Internet users. It proposes a one-month cooling-off period for couples who wish to part ways and apply to divorce registration agencies. During the cooling-off month after a divorce registration agency receives a divorce application, either the husband or the wife can stop the application. After the cooling-off month, both sides are required to go to the agency for the divorce certificates. Failing to do so will mean the divorce application is canceled automatically.
基金Project supported by the National Natural Science Foundation of China (Nos. 10972182,10772147,and 10632030)the National Basic Research Program of China (No. 2006CB 601202)+4 种基金the National 111 Project of China (No. B07050)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (No. GZ0802)the Doctoral Foundation of Northwestern Polytechnical University (No. CX200908)the China Postdoctoral Science Foundation (No. 20090450170)the Northwestern Polytechnical University Foundation for Fundamental Research (No. JC200938)
文摘The wave propagation problem in the nonlinear periodic mass-spring structure chain is analyzed using the symplectic mathematical method. The energy method is used to construct the dynamic equation, and the nonlinear dynamic equation is linearized using the small parameter perturbation method. Eigen-solutions of the symplectic matrix are used to analyze the wave propagation problem in nonlinear periodic lattices. Nonlinearity in the mass-spring chain, arising from the nonlinear spring stiffness effect, has profound effects on the overall transmission of the chain. The wave propagation characteristics are altered due to nonlinearity, and related to the incident wave intensity, which is a genuine nonlinear effect not present in the corresponding linear model. Numerical results show how the increase of nonlinearity or incident wave amplitude leads to closing of transmitting gaps. Comparison with the normal recursive approach shows effectiveness and superiority of the symplectic method for the wave propagation problem in nonlinear periodic structures.
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112, 10871040) Acknowledgement The authors are in debt to thank the helpful discussions with Prof Qin and Dr A P Deng.
文摘A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.