If the frequency of the incident sound wave coincides with one of the eigenfrequencies of the underwater elastic cylinder, the corresponding eigenvibration will be excited by incident sound wave and strongly reradiate...If the frequency of the incident sound wave coincides with one of the eigenfrequencies of the underwater elastic cylinder, the corresponding eigenvibration will be excited by incident sound wave and strongly reradiate sound wave towards surronding water. It has been revealed by previous investigations that the amplitude of backscattering sound appears to be minimum at the eigenfrequencies of the underwater metallic cylinders because of the destructive interference between reradiated wave of the eigenvibration and the geometrical reflected wave from surface of the cylinders. In this paper, a new phenomenon has been revealed. The amplitude of backscattering sound appears to be maximum at the eigenfrequencies of a cylinder made from nonmetallic material in which the velocity of elastic transverse wave is less than the sound velocity in water.展开更多
The objective of this study is to apply numerical methods to investigate the effects of the spacing on the vortex shedding of two elastically mounted cylinders in tandem arrangement. 2-D computational simulations are ...The objective of this study is to apply numerical methods to investigate the effects of the spacing on the vortex shedding of two elastically mounted cylinders in tandem arrangement. 2-D computational simulations are carried out at low Reynolds number of 100. The study utilized a commercial software ANSYS FLUENT to carry out the computational simulations. First, a number of test cases, including flows past one and two cylinders with predetermined motions, are simulated to evaluate the solver’s accuracy. The vortex shedding and hydrodynamic forces from the current findings and those from literature show good agreement, which supports the accuracy of the current solver. Multiple simulations were the performed for flow around two elastically mounted cylinders in tandem arrangement. The subsequent relative flow fields demonstrated that for a certain range of spacing, vortex shedding was completely eliminated while it remained completely unaffected or partially reduced for other ranges of spacing. This suggests that the spacing between the two cylinders can be utilized as a passive method of suppressing vortex shedding.展开更多
The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise hom...The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics.It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction.Moreover,it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied.The focus is on the influence of the mentioned imperfectness on the critical velocity of the moving load and this is the main contribution and difference of the present paper the related other ones.The other difference of the present work from the related other ones is the study of the response of the interface stresses to the load moving velocity,distribution of these stresses with respect to the axial coordinates and to the time.At the same time,the present work contains detail analyses of the influence of problem parameters such as the ratio of modulus of elasticity,the ratio of the cylinder thickness to the cylinder radius,and the shear-spring type parameter which characterizes the degree of the contact imperfection on the values of the critical velocity and stress distribution.Corresponding numerical results are presented and discussed.In particular,it is established that the values of the critical velocity of the moving pressure decrease with the external radius of the cylinder under constant thickness of that.展开更多
The forced-vibration response of a simply-supported isotropic thick-walled hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave excitations on its curved surfaces is studied within the ...The forced-vibration response of a simply-supported isotropic thick-walled hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave excitations on its curved surfaces is studied within the framework of linear elastodynamics.Exact semi-analytical solutions for the steady-state displacement field of the cylinder are constructed using recently-published parametric solutions to the Navier-Lam´e equation.Formal application of the standing-wave boundary conditions generates three parameter-dependent 66 linear systems,each of which can be numerically solved in order to determine the parametric response of the cylinder’s displacement field under various conditions.The method of solution is direct and demonstrates a general approach that can be applied to solve many other elastodynamic forcedresponse problems involving isotropic elastic cylinders.As an application,and considering several examples,the obtained solution is used to compute the steady-state frequency response in a few specific low-order excitation cases.In each case,the solution generates a series of resonances that are in exact correspondence with a unique subset of the natural frequencies of the simply-supported cylinder.The considered problem is of general theoretical interest in structural mechanics and acoustics and more practically serves as a benchmark forced-vibration problem involving a thickwalled hollow elastic cylinder.展开更多
The stability and vibration of an elastic rod with a circular cross section under the constraint of a cylinder is discussed. The differential equations of dynamics of the constrained rod are established with Euler's ...The stability and vibration of an elastic rod with a circular cross section under the constraint of a cylinder is discussed. The differential equations of dynamics of the constrained rod are established with Euler's angles as variables describing the attitude of the cross section. The existence conditions of helical equilibrium under constraint are discussed as a special configuration of the rod. The stability of the helical equilibrium is discussed in the realms of statics and dynamics, respectively. Necessary conditions for the stability of helical rod are derived in space domain and time domain, and the difference and relationship between Lyapunov's and Euler's stability concepts are discussed. The free frequency of flexural vibration of the helical rod with cylinder constraint is obtained in analytical form.展开更多
In this paper a new 2D-FGM material model based on Mori-Tanaka scheme and third-order transition function has been developed for a thick hollow cylinder of finite length.Elastic mechanical stress analysis is performed...In this paper a new 2D-FGM material model based on Mori-Tanaka scheme and third-order transition function has been developed for a thick hollow cylinder of finite length.Elastic mechanical stress analysis is performed by utilizing the finite element method.The corresponding material,displacement and stress distributions are evaluated for different values of nr and nz.Moreover,the effects of different material property distributions on the effective stress with respect to the metallic phase volume fraction are investigated.It is demonstrated that the increase in nr and V_m leads to a significant reduction in the effective stress.Finally,it is shown that the ceramic phase rich cylinder wall has lower maximum effective stresses of which the lowest value of effective stress has been evaluated for nr=20 and nz=5.This minimum value is about half the maximum effective stress which has been evaluated for the non-FGM cylinder case(nr=nz=0.1).展开更多
The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets...The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.展开更多
Although sound scattering by submcrged elastic cylinders was extensively studied,only a few works aimed at the case of obliquely incidence. In this paper, we derive a simple and explicit expression of the pure clastic...Although sound scattering by submcrged elastic cylinders was extensively studied,only a few works aimed at the case of obliquely incidence. In this paper, we derive a simple and explicit expression of the pure clastic resonance scattering function of a submerged infinite cylinder excited by a plane wave at obliquely incidcnce. For backscattering of a solid aluminum cylinder we calculated (a) the partial resoriance spectra n=0 to 7, (b) the far field total form functions and the pure elastic resonance form the functions, (c) the complex resonance poles in the normalized complex frequency plane and (d) the dispersion curves of the first several families of helical waves, at various incident angles in details. It was discussed that the generation mechanism and properties of the complementary resonance modes are existed only at oblique incidence. Our attention is also focused on the variance of the resonance spectra with the incident angle, particularly near several critical angles.展开更多
基金The project was supported by the National Science Foundation
文摘If the frequency of the incident sound wave coincides with one of the eigenfrequencies of the underwater elastic cylinder, the corresponding eigenvibration will be excited by incident sound wave and strongly reradiate sound wave towards surronding water. It has been revealed by previous investigations that the amplitude of backscattering sound appears to be minimum at the eigenfrequencies of the underwater metallic cylinders because of the destructive interference between reradiated wave of the eigenvibration and the geometrical reflected wave from surface of the cylinders. In this paper, a new phenomenon has been revealed. The amplitude of backscattering sound appears to be maximum at the eigenfrequencies of a cylinder made from nonmetallic material in which the velocity of elastic transverse wave is less than the sound velocity in water.
文摘The objective of this study is to apply numerical methods to investigate the effects of the spacing on the vortex shedding of two elastically mounted cylinders in tandem arrangement. 2-D computational simulations are carried out at low Reynolds number of 100. The study utilized a commercial software ANSYS FLUENT to carry out the computational simulations. First, a number of test cases, including flows past one and two cylinders with predetermined motions, are simulated to evaluate the solver’s accuracy. The vortex shedding and hydrodynamic forces from the current findings and those from literature show good agreement, which supports the accuracy of the current solver. Multiple simulations were the performed for flow around two elastically mounted cylinders in tandem arrangement. The subsequent relative flow fields demonstrated that for a certain range of spacing, vortex shedding was completely eliminated while it remained completely unaffected or partially reduced for other ranges of spacing. This suggests that the spacing between the two cylinders can be utilized as a passive method of suppressing vortex shedding.
文摘The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics.It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction.Moreover,it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied.The focus is on the influence of the mentioned imperfectness on the critical velocity of the moving load and this is the main contribution and difference of the present paper the related other ones.The other difference of the present work from the related other ones is the study of the response of the interface stresses to the load moving velocity,distribution of these stresses with respect to the axial coordinates and to the time.At the same time,the present work contains detail analyses of the influence of problem parameters such as the ratio of modulus of elasticity,the ratio of the cylinder thickness to the cylinder radius,and the shear-spring type parameter which characterizes the degree of the contact imperfection on the values of the critical velocity and stress distribution.Corresponding numerical results are presented and discussed.In particular,it is established that the values of the critical velocity of the moving pressure decrease with the external radius of the cylinder under constant thickness of that.
基金support from the Natural Sciences and Engineering Research Council(NSERC)of Canada and the Ontario Research Foundation(ORF).
文摘The forced-vibration response of a simply-supported isotropic thick-walled hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave excitations on its curved surfaces is studied within the framework of linear elastodynamics.Exact semi-analytical solutions for the steady-state displacement field of the cylinder are constructed using recently-published parametric solutions to the Navier-Lam´e equation.Formal application of the standing-wave boundary conditions generates three parameter-dependent 66 linear systems,each of which can be numerically solved in order to determine the parametric response of the cylinder’s displacement field under various conditions.The method of solution is direct and demonstrates a general approach that can be applied to solve many other elastodynamic forcedresponse problems involving isotropic elastic cylinders.As an application,and considering several examples,the obtained solution is used to compute the steady-state frequency response in a few specific low-order excitation cases.In each case,the solution generates a series of resonances that are in exact correspondence with a unique subset of the natural frequencies of the simply-supported cylinder.The considered problem is of general theoretical interest in structural mechanics and acoustics and more practically serves as a benchmark forced-vibration problem involving a thickwalled hollow elastic cylinder.
基金the National Natural Science Foundation of China (10472067)
文摘The stability and vibration of an elastic rod with a circular cross section under the constraint of a cylinder is discussed. The differential equations of dynamics of the constrained rod are established with Euler's angles as variables describing the attitude of the cross section. The existence conditions of helical equilibrium under constraint are discussed as a special configuration of the rod. The stability of the helical equilibrium is discussed in the realms of statics and dynamics, respectively. Necessary conditions for the stability of helical rod are derived in space domain and time domain, and the difference and relationship between Lyapunov's and Euler's stability concepts are discussed. The free frequency of flexural vibration of the helical rod with cylinder constraint is obtained in analytical form.
文摘In this paper a new 2D-FGM material model based on Mori-Tanaka scheme and third-order transition function has been developed for a thick hollow cylinder of finite length.Elastic mechanical stress analysis is performed by utilizing the finite element method.The corresponding material,displacement and stress distributions are evaluated for different values of nr and nz.Moreover,the effects of different material property distributions on the effective stress with respect to the metallic phase volume fraction are investigated.It is demonstrated that the increase in nr and V_m leads to a significant reduction in the effective stress.Finally,it is shown that the ceramic phase rich cylinder wall has lower maximum effective stresses of which the lowest value of effective stress has been evaluated for nr=20 and nz=5.This minimum value is about half the maximum effective stress which has been evaluated for the non-FGM cylinder case(nr=nz=0.1).
文摘The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.
文摘Although sound scattering by submcrged elastic cylinders was extensively studied,only a few works aimed at the case of obliquely incidence. In this paper, we derive a simple and explicit expression of the pure clastic resonance scattering function of a submerged infinite cylinder excited by a plane wave at obliquely incidcnce. For backscattering of a solid aluminum cylinder we calculated (a) the partial resoriance spectra n=0 to 7, (b) the far field total form functions and the pure elastic resonance form the functions, (c) the complex resonance poles in the normalized complex frequency plane and (d) the dispersion curves of the first several families of helical waves, at various incident angles in details. It was discussed that the generation mechanism and properties of the complementary resonance modes are existed only at oblique incidence. Our attention is also focused on the variance of the resonance spectra with the incident angle, particularly near several critical angles.