Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclu...Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclusion The elastic solution of a straight dislocation parallel to the quasiperiodic axis in 1D hexagonal quasicrystals was obtained and the generalized Peach Koehler force on a dislocation in quasicrystals was given.展开更多
We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity...We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity at the anticrack tip. Two realvalued phonon stress intensity factors and two real-valued phason stress intensity factors are introduced to scale four separate modes of deformation. We obtain four analytic functions which completely characterize the induced phonon and phason stresses as well as the displacement field. In particular, we derive a concise yet elegant representation of the anticrack contraction force.展开更多
When the size of an inclusion shrinks to nanometers, interface energy plays an important role in the deformation around it. In the present paper, we consider the effect of interface energy on the elastic fields near a...When the size of an inclusion shrinks to nanometers, interface energy plays an important role in the deformation around it. In the present paper, we consider the effect of interface energy on the elastic fields near a spheroidal nanoinclusion embedded in an elastic medium on the basis of surface elasticity theory. Using Boussinesq-Sadowsky potential function method, we obtain the deformation field near the inclusion subjected to a uniformly uniaxial loading at infinity. The results show that the elastic fields near the nano-inclusion depend strongly on the interface properties, the size and shape of inclusion. These new characteristics may be helpful to understand various relevant mechanical performances of nanosized inhomogeneities.展开更多
A phase-field method was employed to study the influence of elastic field on the nucleation and microstructure evolution. Two kinds of nucleation process were considered: one using fixed nucleation probability and th...A phase-field method was employed to study the influence of elastic field on the nucleation and microstructure evolution. Two kinds of nucleation process were considered: one using fixed nucleation probability and the other calculated from the classical nucleation theory. In the latter case, the simulated results show that the anisotropic elastic strain field yields significant effects on the behavior of nucleation. With a large lattice misfit between the matrixes and the precipitates, the nucleation process does not appear fully random but displays some spatial correlation and has a preference for the elastic soft direction. However, with a small lattice misfit, this bias does not look quite clear. On the contrary, in the case of fixed nucleation probability, the elastic field has no influence on the nucleation process. The lattice mismatch also exerts influences on the microstructure morphology: with lattice mismatch becoming larger, the microstructure proves to align along the elastic soft direction.展开更多
The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjec...The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjective isolate quantum dot system is used. The calculated results can he directly used to evaluate the conductive band and valence band confinement potential and strain introduced by the effective mass of the charge carriers in strain QD.展开更多
A systematic investigation of the strain distribution of self-organized, lens-shaped quantum dot in the case of groffth direction on (001) substrate was presented. The three-dimensional finite element analysis for a...A systematic investigation of the strain distribution of self-organized, lens-shaped quantum dot in the case of groffth direction on (001) substrate was presented. The three-dimensional finite element analysis for an array of dots was used for the strain calculation. The dependence of the strain energy density distribution on the thickness of the capping layer was investigated in detail when the elastic characteristics of the matrix material were anisotropic. It is shown that the elastic anisotropic greatly influences the stress, strain, and strain energy density in the quantum dot structures. The anisotropic ratio of the matrix material and the combination with different thicknesses of the capping layer, may lead to different strain energy density minimum locations on the capping layer surface, which can result in various vertical ordering phenomena for the next layer of quantum dots, i.e. partial alignment, random alignment, and complete alignment.展开更多
Interracial dislocation may have a spreading core corresponding to a weak shear resistance of interfaces. In this paper, a conic model is proposed to mimic the spreading core of interfacial dislocation in anisotropic ...Interracial dislocation may have a spreading core corresponding to a weak shear resistance of interfaces. In this paper, a conic model is proposed to mimic the spreading core of interfacial dislocation in anisotropic bimaterials. By the Stroh formalism and Green's function, the analytical expressions of the elastic fields are deduced for such a dislocation. Taking Cu/Nb bimaterial as an example, it is demonstrated that the accuracy and efficiency of the method are well validated by the interface conditions, a spreading core can greatly reduce the stress intensity near the interfacial dislocation compared with the compact core, and the elastic fields near the spreading core region are significantly different from the condensed core, while they are less sensitive to a field point that is 1.5 times the core width away from the center of the spreading core.展开更多
In this paper,an efficient calculation method based on discrete Fourier transformation is developed for evaluating elastic load induced elastic deformation fields of film-substrate system.Making use of 2 D discrete Fo...In this paper,an efficient calculation method based on discrete Fourier transformation is developed for evaluating elastic load induced elastic deformation fields of film-substrate system.Making use of 2 D discrete Fourier transformation,the elastic fields induced by Hertz load is harvested in frequency domain,and the displacement and stress fields across the interface are enforced to satisfy the elasticity conditions for each Fourier modes.Given arbitrary distributed stress field at free surface plane of the three types of film-substrate systems,unique resultant elastic field within the can be harvested.Hertz load of half space,elastic film on elastic substrate,elastic film on rigid substrate system and elastic film-substrate system with three types of imperfect interface models are investigated:(1)the spring-like imperfect interface model which can be described as:u^fk|zf=-h-u^sk|z^s=0=KTσKZ and u^fz|zf=-h-u^sz|z^s=0=KNσZZ;(2)the dislocation-like interface model,where interface displacement and stress components relation can be described as:u^fi|zf=0=k^uiju^si|z^s=0 andσ^fiz|z^f=0=σ^siz|zf=0=σ^siz|z^s=0;(3)the force-like interface model,where interface displacement and stress components relation can be described as:u^fi|z^f=0=u^si|z^s=0 andσ^fiz|z^f=0=k^tijσ^siz|z^s=0 respectively.Finally,several simulation examples are performed for verification of the reliability and efficiency of the proposed semi-analytical methods.展开更多
The elasticity theory of the dislocation of cubic quasicrystals is developed. The governing equations of anti-plane elasticity dynamics problem of the quasicrystals were reduced to a solution of wave equations by intr...The elasticity theory of the dislocation of cubic quasicrystals is developed. The governing equations of anti-plane elasticity dynamics problem of the quasicrystals were reduced to a solution of wave equations by introducing displacement functions, and the analytical expressions of displacements, stresses and energies induced by a moving screw dislocation in the cubic quasicrystalline and the velocity limit of the dislocation were obtained. These provide important information for studying the plastic deformation of the new solid material.展开更多
The Al–C–N films are deposited on Si substrates by using a dense plasma focus(DPF) device with aluminum fitted central electrode(anode) and by operating the device with CH_4/N_2 gas admixture ratio of 1:1. XRD ...The Al–C–N films are deposited on Si substrates by using a dense plasma focus(DPF) device with aluminum fitted central electrode(anode) and by operating the device with CH_4/N_2 gas admixture ratio of 1:1. XRD results verify the crystalline Al N(111) and Al_3CON(110) phase formation of the films deposited using multiple shots. The elemental compositions as well as chemical states of the deposited Al–C–N films are studied using XPS analysis, which affirm Al–N, C–C, and C–N bonding. The FESEM analysis reveals that the deposited films are composed of nanoparticles and nanoparticle agglomerates. The size of the agglomerates increases at a higher number of focus deposition shots for multiple shot depositions. Nanoindentation results reveal the variation in mechanical properties(nanohardness and elastic modulus)of Al–C–N films deposited with multiple shots. The highest values of nanohardness and elastic modulus are found to be about 11 and 185 GPa, respectively, for the film deposited with 30 focus deposition shots. The mechanical properties of the films deposited using multiple shots are related to the Al content and C–N bonding.展开更多
The room temperature brittleness has been a long standing problem in bulk metallic glasses realm.This has seriously limited the application potential of metallic glasses and their composites.The elastic deformation be...The room temperature brittleness has been a long standing problem in bulk metallic glasses realm.This has seriously limited the application potential of metallic glasses and their composites.The elastic deformation behaviors of metallic glass matrix composites are closely related to their plastic deformation states.The elastic deformation behaviors of Cu48-xZr48Al4Nbx(x=0,3at.%)metallic glass matrix composites(MGMCs)with different crystallization degrees were investigated using an in-situ digital image correlation(DIC)technique during tensile process.With decreasing crystallization degree,MGMC exhibits obvious elastic deformation ability and an increased tensile fracture strength.The notable tensile elasticity is attributed to the larger shear strain heterogeneity emerging on the surface of the sample.This finding has implications for the development of MGMCs with excellent tensile properties.展开更多
文摘Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclusion The elastic solution of a straight dislocation parallel to the quasiperiodic axis in 1D hexagonal quasicrystals was obtained and the generalized Peach Koehler force on a dislocation in quasicrystals was given.
基金the National Natural Science Foundation of China(No.11272121)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2017-03716115112)。
文摘We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity at the anticrack tip. Two realvalued phonon stress intensity factors and two real-valued phason stress intensity factors are introduced to scale four separate modes of deformation. We obtain four analytic functions which completely characterize the induced phonon and phason stresses as well as the displacement field. In particular, we derive a concise yet elegant representation of the anticrack contraction force.
基金supported by the National Natural Science Foundation of China (10672129 and 10602042)973 program (2007CB707702)NCET program of MOE.
文摘When the size of an inclusion shrinks to nanometers, interface energy plays an important role in the deformation around it. In the present paper, we consider the effect of interface energy on the elastic fields near a spheroidal nanoinclusion embedded in an elastic medium on the basis of surface elasticity theory. Using Boussinesq-Sadowsky potential function method, we obtain the deformation field near the inclusion subjected to a uniformly uniaxial loading at infinity. The results show that the elastic fields near the nano-inclusion depend strongly on the interface properties, the size and shape of inclusion. These new characteristics may be helpful to understand various relevant mechanical performances of nanosized inhomogeneities.
基金National Natural Science Foundation of China (50401013)
文摘A phase-field method was employed to study the influence of elastic field on the nucleation and microstructure evolution. Two kinds of nucleation process were considered: one using fixed nucleation probability and the other calculated from the classical nucleation theory. In the latter case, the simulated results show that the anisotropic elastic strain field yields significant effects on the behavior of nucleation. With a large lattice misfit between the matrixes and the precipitates, the nucleation process does not appear fully random but displays some spatial correlation and has a preference for the elastic soft direction. However, with a small lattice misfit, this bias does not look quite clear. On the contrary, in the case of fixed nucleation probability, the elastic field has no influence on the nucleation process. The lattice mismatch also exerts influences on the microstructure morphology: with lattice mismatch becoming larger, the microstructure proves to align along the elastic soft direction.
文摘The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjective isolate quantum dot system is used. The calculated results can he directly used to evaluate the conductive band and valence band confinement potential and strain introduced by the effective mass of the charge carriers in strain QD.
基金This work was financially supported by the "973" National Basic Research Program of China (No. 2003CB314901)the National "863" High Technology Project of China (No. 2003AA311070)the Open Project of State Key Laboratory on Integrated Opto-electronics.
文摘A systematic investigation of the strain distribution of self-organized, lens-shaped quantum dot in the case of groffth direction on (001) substrate was presented. The three-dimensional finite element analysis for an array of dots was used for the strain calculation. The dependence of the strain energy density distribution on the thickness of the capping layer was investigated in detail when the elastic characteristics of the matrix material were anisotropic. It is shown that the elastic anisotropic greatly influences the stress, strain, and strain energy density in the quantum dot structures. The anisotropic ratio of the matrix material and the combination with different thicknesses of the capping layer, may lead to different strain energy density minimum locations on the capping layer surface, which can result in various vertical ordering phenomena for the next layer of quantum dots, i.e. partial alignment, random alignment, and complete alignment.
基金Project supported by the National Natural Science Foundation of China(No.11672173)the Shanghai Eastern-Scholar Planthe Innovation Program of Shanghai Municipal Education Commission
文摘Interracial dislocation may have a spreading core corresponding to a weak shear resistance of interfaces. In this paper, a conic model is proposed to mimic the spreading core of interfacial dislocation in anisotropic bimaterials. By the Stroh formalism and Green's function, the analytical expressions of the elastic fields are deduced for such a dislocation. Taking Cu/Nb bimaterial as an example, it is demonstrated that the accuracy and efficiency of the method are well validated by the interface conditions, a spreading core can greatly reduce the stress intensity near the interfacial dislocation compared with the compact core, and the elastic fields near the spreading core region are significantly different from the condensed core, while they are less sensitive to a field point that is 1.5 times the core width away from the center of the spreading core.
基金supported by the National Natural Science Foundation of China(Grants 11702023 and 11972081)。
文摘In this paper,an efficient calculation method based on discrete Fourier transformation is developed for evaluating elastic load induced elastic deformation fields of film-substrate system.Making use of 2 D discrete Fourier transformation,the elastic fields induced by Hertz load is harvested in frequency domain,and the displacement and stress fields across the interface are enforced to satisfy the elasticity conditions for each Fourier modes.Given arbitrary distributed stress field at free surface plane of the three types of film-substrate systems,unique resultant elastic field within the can be harvested.Hertz load of half space,elastic film on elastic substrate,elastic film on rigid substrate system and elastic film-substrate system with three types of imperfect interface models are investigated:(1)the spring-like imperfect interface model which can be described as:u^fk|zf=-h-u^sk|z^s=0=KTσKZ and u^fz|zf=-h-u^sz|z^s=0=KNσZZ;(2)the dislocation-like interface model,where interface displacement and stress components relation can be described as:u^fi|zf=0=k^uiju^si|z^s=0 andσ^fiz|z^f=0=σ^siz|zf=0=σ^siz|z^s=0;(3)the force-like interface model,where interface displacement and stress components relation can be described as:u^fi|z^f=0=u^si|z^s=0 andσ^fiz|z^f=0=k^tijσ^siz|z^s=0 respectively.Finally,several simulation examples are performed for verification of the reliability and efficiency of the proposed semi-analytical methods.
基金Project supported by the National Natural Science Foundation of China (No. 10372016)
文摘The elasticity theory of the dislocation of cubic quasicrystals is developed. The governing equations of anti-plane elasticity dynamics problem of the quasicrystals were reduced to a solution of wave equations by introducing displacement functions, and the analytical expressions of displacements, stresses and energies induced by a moving screw dislocation in the cubic quasicrystalline and the velocity limit of the dislocation were obtained. These provide important information for studying the plastic deformation of the new solid material.
文摘The Al–C–N films are deposited on Si substrates by using a dense plasma focus(DPF) device with aluminum fitted central electrode(anode) and by operating the device with CH_4/N_2 gas admixture ratio of 1:1. XRD results verify the crystalline Al N(111) and Al_3CON(110) phase formation of the films deposited using multiple shots. The elemental compositions as well as chemical states of the deposited Al–C–N films are studied using XPS analysis, which affirm Al–N, C–C, and C–N bonding. The FESEM analysis reveals that the deposited films are composed of nanoparticles and nanoparticle agglomerates. The size of the agglomerates increases at a higher number of focus deposition shots for multiple shot depositions. Nanoindentation results reveal the variation in mechanical properties(nanohardness and elastic modulus)of Al–C–N films deposited with multiple shots. The highest values of nanohardness and elastic modulus are found to be about 11 and 185 GPa, respectively, for the film deposited with 30 focus deposition shots. The mechanical properties of the films deposited using multiple shots are related to the Al content and C–N bonding.
基金the financial support by the National Natural Science Foundation of China(51371078,51671067)
文摘The room temperature brittleness has been a long standing problem in bulk metallic glasses realm.This has seriously limited the application potential of metallic glasses and their composites.The elastic deformation behaviors of metallic glass matrix composites are closely related to their plastic deformation states.The elastic deformation behaviors of Cu48-xZr48Al4Nbx(x=0,3at.%)metallic glass matrix composites(MGMCs)with different crystallization degrees were investigated using an in-situ digital image correlation(DIC)technique during tensile process.With decreasing crystallization degree,MGMC exhibits obvious elastic deformation ability and an increased tensile fracture strength.The notable tensile elasticity is attributed to the larger shear strain heterogeneity emerging on the surface of the sample.This finding has implications for the development of MGMCs with excellent tensile properties.