Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and...Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with Iow-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.展开更多
Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ...Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).展开更多
Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nul...Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nulliparous women who underwent transvaginal ultrasound examination for routine physical examination were retrospectively enrolled,including 103 in follicular phase,78 in ovulation phase and 37 in luteal phase.Cervical canal length(CL)and E-Cervix elasticity parameters were compared among different age groups and different stages of menstrual cycle,including elasticity contrast index(ECI),hardness ratio(HR),cervical internal and external orifice strain values(IOS and EOS)and IOS/EOS ratio.Results No significant difference of CL nor cervical elasticity parameters was detected among healthy adult nulliparous women at different age groups(all P>0.05).There were significant differences of ECI,HR and IOS among different menstrual cycle stages(all P<0.05),among which women in follicular phase had higher ECI and IOS but lower HR than those in luteal phase(all P<0.05).Conclusion No significant difference of cervical elasticity existed among healthy adult nulliparous women at different age groups.Meanwhile,cervical elasticity of healthy adult nulliparous women changed during menstrual cycle,in follicular phase had higher ECI and IOS but lower HR than in luteal phase.展开更多
Presents a new way of elastic wave imaging which features 1)high inversion accuracy; 2)stable and rapid convergence; 3) high resistance to random noise; 4) little dependence on initial values, and concludes with numer...Presents a new way of elastic wave imaging which features 1)high inversion accuracy; 2)stable and rapid convergence; 3) high resistance to random noise; 4) little dependence on initial values, and concludes with numerical results that this method has many advantages over all the other imaging methods because our inversion equation following the variation principle reflects the relation between the little variation of scattering field and that of perturbation function.展开更多
A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The t...A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).展开更多
Tissue elasticity and viscosity are always associated with pathological changes.As a new imaging method,ultrasound vibro-acoustic imaging is developed for quantitatively measuring tissue elasticity and viscosity which...Tissue elasticity and viscosity are always associated with pathological changes.As a new imaging method,ultrasound vibro-acoustic imaging is developed for quantitatively measuring tissue elasticity and viscosity which have important significance in early diagnosis of cancer.This paper developed an ultrasound vibro-acoustic imaging research platform mainly consisting of excitation part and detection part.The excitation transducer was focused at one location within the medium to generate harmonic vibration and shear wave propagation,and the detection transducer was applied to detect shear wave at other locations along shear wave propagation path using pulse-echo method.The received echoes were amplified,filtered,digitized and then processed by Kalman filter to estimate the vibration phase.According to the phase changes between different propagation locations,we estimated the shear wave speed,and then used it to calculate the tissue elasticity and viscosity.Preliminary phantom experiments based on this platform show results of phantom elasticity and viscosity close to literature values.Upcoming experiments are now in progress to obtain quantitative elasticity and viscosity in vitro tissue.展开更多
Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuit...Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs.展开更多
AIM:To investigate the diagnostic accuracy of acoustic radiation force impulse (ARFI) imaging as a noninvasive method for the assessment of liver fibrosis in chronic hepatitis C (CHC) patients.METHODS:We performed a p...AIM:To investigate the diagnostic accuracy of acoustic radiation force impulse (ARFI) imaging as a noninvasive method for the assessment of liver fibrosis in chronic hepatitis C (CHC) patients.METHODS:We performed a prospective blind com-parison of ARFI elastography,APRI index and FibroMax in a consecutive series of patients who underwent liver biopsy for CHC in University Hospital Bucharest. His-topathological staging of liver fibrosis according to the METAVIR scoring system served as the reference. A to-tal of 74 patients underwent ARFI elastography,APRI index,FibroMax and successful liver biopsy. RESULTS:The noninvasive tests had a good correlation with the liver biopsy results. The most powerful test in predicting fibrosis was ARFI elastography. The diagnostic accuracy of ARFI elastography,expressedas area under receiver operating characteristic curve (AUROC) had a validity of 90.2% (95% CI AUROC = 0.831-0.972,P < 0.001) for the diagnosis of significant f ibrosis (F ≥ 2). ARFI sonoelastography predicted even better F3 or F4 fibrosis (AUROC = 0.993,95% CI = 0.979-1).CONCLUSION:ARFI elastography had very good accuracy for the assessment of liver fibrosis and was superior to other noninvasive methods (APRI Index,FibroMax) for staging liver fibrosis.展开更多
Elasticity is an important physical property of human tissues. There is a tremendous difference in elasticity between normal and pathological tissues. Noninvasive evaluation of the elasticity of human tissues would be...Elasticity is an important physical property of human tissues. There is a tremendous difference in elasticity between normal and pathological tissues. Noninvasive evaluation of the elasticity of human tissues would be valuable for clinical practice. Magnetic resonance elastography(MRE)is a recently developed noninvasive imaging technique that can directly visualize and quantitatively measure tissue elasticity. This article reviewed the MRE technique and its current status.展开更多
Quantitative investigation on mechanical characteristics of cardiac myocytes has important physiological significance. Based on elastic substrate technique, this paper develops a set of algorithms for high-efficiency ...Quantitative investigation on mechanical characteristics of cardiac myocytes has important physiological significance. Based on elastic substrate technique, this paper develops a set of algorithms for high-efficiency cellular traction recovery. By applying a gradient-based digital image correlation method to track randomly distributed fluorescence microbeads on the deformed substrate induced by single cardiac myocyte, high-resolution substrate displacement field can readily be obtained. By using a numerical algorithm based on the integral Boussinesq solution, cell-substrate tractions are reconstructed in a stable and reliable manner. Finally, spatiotemporal dynamics of a single cardiac myocyte is investigated as it adheres to a polyacrylamide elastic substrate.展开更多
Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and f...Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and functional abnormalities of the gastrointestinal (GI) tract. Imaging methods such as ultrasonography, magnetic resonance imaging (MRI), endoscopy, endosonography, and elastography will be outlined and visualization with Virtual Reality and haptic methods. Ultrasonography is a versatile method that can be used to evaluate antral contractility, gastric emptying, transpyloric flow, gastric configuration, intragastric distribution of meals, gastric accommodation and strain measurement of the gastric wall. Advanced methods for endoscopic ultrasound, three-dimensional (3D) ultrasound, and tissue Doppler (Strain Rate Imaging) provide detailed information of the GI tract. Food hypersensitivity reactions including gastrointestinal reactions due to food allergy can be visualized by ultrasonography and MRI. Development of multi-parametric and multi-modal imaging may increase diagnostic benefits and facilitate fusion of diagnostic and therapeutic imaging in the future.展开更多
In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM). A new method was presented for the characterization of mechanical pr...In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM). A new method was presented for the characterization of mechanical properties at elevated temperature. The three-point bending tests were performed on graphite materials by an universal testing machine equipped with heating fumace. Based on the heterogeneous deformation fields measured by the digital image correlation (DIC) technique, the elastic constants were then extracted by using VFM. The measurement results of the elastic constants at 500℃ were obtained. The ef- fect on the experimental results was also analyzed. The successful results verify the feasibility of using the proposed method to measure the properties of graphite at high temperature, and the proposed method is believed to have a good potential for further applications.展开更多
Backscattered electron images(BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone(ITZ) in concrete. Influences of aggregate size...Backscattered electron images(BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone(ITZ) in concrete. Influences of aggregate size(5, 10, 20, and 30 mm), water to cement ratio(0.23, 0.35 and 0.53) and curing time(from 3d to 90d) on the microstructure of interfacial transition zone between coarse aggregate and bulk cement matrix were investigated. The volume percentage of detectable porosity and unhydrated cement in ITZ was quantitatively analyzed and compared with that in the matrix of various concretes. Nanoindentation technology was applied to obtain the elastic properties of ITZ and matrix, and the elastic modulus of concrete was then calculated based on the Lu & Torquato model and self-consistence scheme by using the ITZ thickness and elastic modulus obtained from this investigation. The experimental results demonstrated that the microstructure and thickness of ITZ in concrete vary with a variety of factors, like aggregate size, water to cement ratio and curing time. The relative low elastic properties of ITZ should be paid attention to, especially for early age concrete.展开更多
The behavior of wall shear stress (WSS) was previously reported in a deformable aneurysm model using fluid-structure interactions. However, these findings have not been validated. In the present study, we examined the...The behavior of wall shear stress (WSS) was previously reported in a deformable aneurysm model using fluid-structure interactions. However, these findings have not been validated. In the present study, we examined the effect of elasticity (i.e., deformation) on wall shear stress inside a cerebral aneurysm at the apex of a bifurcation using particle image velocimetry in vitro. The flow model simulated a human patient-specific aneurysm at the apex of the bifurcation of the middle cerebral artery. Flow characteristics by wall elasticity were examined for both elastic and non-deformable aneurysm models with pulsatile blood flow. The absolute temporally- and spatially-averaged WSS along the bleb wall was smaller in the elastic model than that in the non-deformable model. This small WSS may be related to attenuation of the WSS. Further, the WSS gradient had a finite value near the stagnation point of the aneurysm dome. Finally, the WSS gradient near the stagnation point was slightly smaller in the elastic model than that in the non-deformable model. These data suggest that elasticity of the aneurysm wall can affect the progression and rupture of aneurysms via hemodynamic stress.展开更多
The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging...The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions. Twenty-two women with normal and prolapse conditions were examined by a vaginal tactile imaging probe. We identified 9 parameters which were sensitive to prolapse conditions (p < 0.05 for one-way ANOVA and/or p < 0.05 for t-test with correlation factor r from -0.73 to -0.56). The list of parameters includes pressure, pressure gradient and dynamic pressure response during muscle contraction at identified locations. These parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse.展开更多
In this paper, an elastic particle mesh (EPM) model is presented. It can be used like a cover to sketch images. EPM offers two advantages: first, when putting on a sketch image, it helps to repair disconnections on...In this paper, an elastic particle mesh (EPM) model is presented. It can be used like a cover to sketch images. EPM offers two advantages: first, when putting on a sketch image, it helps to repair disconnections on salient features. Second, it hides trivial details in the image, thus has the ability of decreasing over-segmentation when used with watershed transformation.展开更多
In order to eliminate displacement and elastic deformation between images of adjacent frames in course of 3D ultrasonic image reconstruction, elastic registration based on skeleton feature was adopt in this paper. A n...In order to eliminate displacement and elastic deformation between images of adjacent frames in course of 3D ultrasonic image reconstruction, elastic registration based on skeleton feature was adopt in this paper. A new automatically skeleton tracking extract algorithm is presented, which can extract connected skeleton to express figure feature. Feature points of connected skeleton are extracted automatically by accounting topical curvature extreme points several times. Initial registration is processed according to barycenter of skeleton. Whereafter, elastic registration based on radial basis function are processed according to feature points of skeleton. Result of example demonstrate that according to traditional rigid registration, elastic registration based on skeleton feature retain natural difference in shape for organr s different part, and eliminate slight elastic deformation between frames caused by image obtained process simultaneously. This algorithm has a high practical value for image registration in course of 3D ultrasound image reconstruction.展开更多
基金supported by the R&D of Key Instruments and Technologies for Deep Resources Prospecting(No.ZDYZ2012-1)National Natural Science Foundation of China(No.11374322)
文摘Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with Iow-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).
文摘Objective To observe the cervical elasticity of healthy adult nulliparous women at different age groups and different stages of menstrual cycle with E-Cervix imaging technology.Methods A total of 218 healthy adult nulliparous women who underwent transvaginal ultrasound examination for routine physical examination were retrospectively enrolled,including 103 in follicular phase,78 in ovulation phase and 37 in luteal phase.Cervical canal length(CL)and E-Cervix elasticity parameters were compared among different age groups and different stages of menstrual cycle,including elasticity contrast index(ECI),hardness ratio(HR),cervical internal and external orifice strain values(IOS and EOS)and IOS/EOS ratio.Results No significant difference of CL nor cervical elasticity parameters was detected among healthy adult nulliparous women at different age groups(all P>0.05).There were significant differences of ECI,HR and IOS among different menstrual cycle stages(all P<0.05),among which women in follicular phase had higher ECI and IOS but lower HR than those in luteal phase(all P<0.05).Conclusion No significant difference of cervical elasticity existed among healthy adult nulliparous women at different age groups.Meanwhile,cervical elasticity of healthy adult nulliparous women changed during menstrual cycle,in follicular phase had higher ECI and IOS but lower HR than in luteal phase.
文摘Presents a new way of elastic wave imaging which features 1)high inversion accuracy; 2)stable and rapid convergence; 3) high resistance to random noise; 4) little dependence on initial values, and concludes with numerical results that this method has many advantages over all the other imaging methods because our inversion equation following the variation principle reflects the relation between the little variation of scattering field and that of perturbation function.
基金Supported by the National Key Scientific Instrument and Equipment Development Projects of China under Grant No 81127901the National Natural Science Foundation of China under Grant Nos 61372017 and 30970828
文摘A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).
基金This work was supported by the National Natural Science Foundation of China(Grant No.81000637)the Key Program of National Natural Science Foundation of China(Grant No.61031003)Shenzhen-HK innovative circle project(Grant No.ZYB200907090125A).
文摘Tissue elasticity and viscosity are always associated with pathological changes.As a new imaging method,ultrasound vibro-acoustic imaging is developed for quantitatively measuring tissue elasticity and viscosity which have important significance in early diagnosis of cancer.This paper developed an ultrasound vibro-acoustic imaging research platform mainly consisting of excitation part and detection part.The excitation transducer was focused at one location within the medium to generate harmonic vibration and shear wave propagation,and the detection transducer was applied to detect shear wave at other locations along shear wave propagation path using pulse-echo method.The received echoes were amplified,filtered,digitized and then processed by Kalman filter to estimate the vibration phase.According to the phase changes between different propagation locations,we estimated the shear wave speed,and then used it to calculate the tissue elasticity and viscosity.Preliminary phantom experiments based on this platform show results of phantom elasticity and viscosity close to literature values.Upcoming experiments are now in progress to obtain quantitative elasticity and viscosity in vitro tissue.
文摘Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs.
基金Supported by Grant 41066/2007, financed by the Ministry of Education and Research
文摘AIM:To investigate the diagnostic accuracy of acoustic radiation force impulse (ARFI) imaging as a noninvasive method for the assessment of liver fibrosis in chronic hepatitis C (CHC) patients.METHODS:We performed a prospective blind com-parison of ARFI elastography,APRI index and FibroMax in a consecutive series of patients who underwent liver biopsy for CHC in University Hospital Bucharest. His-topathological staging of liver fibrosis according to the METAVIR scoring system served as the reference. A to-tal of 74 patients underwent ARFI elastography,APRI index,FibroMax and successful liver biopsy. RESULTS:The noninvasive tests had a good correlation with the liver biopsy results. The most powerful test in predicting fibrosis was ARFI elastography. The diagnostic accuracy of ARFI elastography,expressedas area under receiver operating characteristic curve (AUROC) had a validity of 90.2% (95% CI AUROC = 0.831-0.972,P < 0.001) for the diagnosis of significant f ibrosis (F ≥ 2). ARFI sonoelastography predicted even better F3 or F4 fibrosis (AUROC = 0.993,95% CI = 0.979-1).CONCLUSION:ARFI elastography had very good accuracy for the assessment of liver fibrosis and was superior to other noninvasive methods (APRI Index,FibroMax) for staging liver fibrosis.
文摘Elasticity is an important physical property of human tissues. There is a tremendous difference in elasticity between normal and pathological tissues. Noninvasive evaluation of the elasticity of human tissues would be valuable for clinical practice. Magnetic resonance elastography(MRE)is a recently developed noninvasive imaging technique that can directly visualize and quantitatively measure tissue elasticity. This article reviewed the MRE technique and its current status.
基金supported by the National Basic Research Program (Grant No2007CB935602)the National Natural Science Foundation of China (Grant Nos90607004,10672005 and 10872008)
文摘Quantitative investigation on mechanical characteristics of cardiac myocytes has important physiological significance. Based on elastic substrate technique, this paper develops a set of algorithms for high-efficiency cellular traction recovery. By applying a gradient-based digital image correlation method to track randomly distributed fluorescence microbeads on the deformed substrate induced by single cardiac myocyte, high-resolution substrate displacement field can readily be obtained. By using a numerical algorithm based on the integral Boussinesq solution, cell-substrate tractions are reconstructed in a stable and reliable manner. Finally, spatiotemporal dynamics of a single cardiac myocyte is investigated as it adheres to a polyacrylamide elastic substrate.
文摘Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and functional abnormalities of the gastrointestinal (GI) tract. Imaging methods such as ultrasonography, magnetic resonance imaging (MRI), endoscopy, endosonography, and elastography will be outlined and visualization with Virtual Reality and haptic methods. Ultrasonography is a versatile method that can be used to evaluate antral contractility, gastric emptying, transpyloric flow, gastric configuration, intragastric distribution of meals, gastric accommodation and strain measurement of the gastric wall. Advanced methods for endoscopic ultrasound, three-dimensional (3D) ultrasound, and tissue Doppler (Strain Rate Imaging) provide detailed information of the GI tract. Food hypersensitivity reactions including gastrointestinal reactions due to food allergy can be visualized by ultrasonography and MRI. Development of multi-parametric and multi-modal imaging may increase diagnostic benefits and facilitate fusion of diagnostic and therapeutic imaging in the future.
基金supported by the National Natural Science Foundation of China(11232008,91216301,11227801,and 11172151)the Tsinghua University Initiative Scientific Research Program,and the Major Basic Research Program of Beijing Institute of Technology(2011CX01030)
文摘In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM). A new method was presented for the characterization of mechanical properties at elevated temperature. The three-point bending tests were performed on graphite materials by an universal testing machine equipped with heating fumace. Based on the heterogeneous deformation fields measured by the digital image correlation (DIC) technique, the elastic constants were then extracted by using VFM. The measurement results of the elastic constants at 500℃ were obtained. The ef- fect on the experimental results was also analyzed. The successful results verify the feasibility of using the proposed method to measure the properties of graphite at high temperature, and the proposed method is believed to have a good potential for further applications.
基金Funded by the National Natural Science Foundation of China(No.51178105)the Major State Basic Research Development Program of China(973 Program)(No.2015CB655104)the Collaborative Innovation Centre for Advanced Civil Engineering Materials
文摘Backscattered electron images(BSE) obtained by scanning electron microscope was used to quantitatively characterize the microstructure of interfacial transition zone(ITZ) in concrete. Influences of aggregate size(5, 10, 20, and 30 mm), water to cement ratio(0.23, 0.35 and 0.53) and curing time(from 3d to 90d) on the microstructure of interfacial transition zone between coarse aggregate and bulk cement matrix were investigated. The volume percentage of detectable porosity and unhydrated cement in ITZ was quantitatively analyzed and compared with that in the matrix of various concretes. Nanoindentation technology was applied to obtain the elastic properties of ITZ and matrix, and the elastic modulus of concrete was then calculated based on the Lu & Torquato model and self-consistence scheme by using the ITZ thickness and elastic modulus obtained from this investigation. The experimental results demonstrated that the microstructure and thickness of ITZ in concrete vary with a variety of factors, like aggregate size, water to cement ratio and curing time. The relative low elastic properties of ITZ should be paid attention to, especially for early age concrete.
文摘The behavior of wall shear stress (WSS) was previously reported in a deformable aneurysm model using fluid-structure interactions. However, these findings have not been validated. In the present study, we examined the effect of elasticity (i.e., deformation) on wall shear stress inside a cerebral aneurysm at the apex of a bifurcation using particle image velocimetry in vitro. The flow model simulated a human patient-specific aneurysm at the apex of the bifurcation of the middle cerebral artery. Flow characteristics by wall elasticity were examined for both elastic and non-deformable aneurysm models with pulsatile blood flow. The absolute temporally- and spatially-averaged WSS along the bleb wall was smaller in the elastic model than that in the non-deformable model. This small WSS may be related to attenuation of the WSS. Further, the WSS gradient had a finite value near the stagnation point of the aneurysm dome. Finally, the WSS gradient near the stagnation point was slightly smaller in the elastic model than that in the non-deformable model. These data suggest that elasticity of the aneurysm wall can affect the progression and rupture of aneurysms via hemodynamic stress.
文摘The Vaginal Tactile Imager (VTI) records pressure patterns from vaginal walls under an applied tissue deformation and during pelvic floor muscle contractions. The objective of this study is to validate tactile imaging and muscle contraction parameters (markers) sensitive to the female pelvic floor conditions. Twenty-two women with normal and prolapse conditions were examined by a vaginal tactile imaging probe. We identified 9 parameters which were sensitive to prolapse conditions (p < 0.05 for one-way ANOVA and/or p < 0.05 for t-test with correlation factor r from -0.73 to -0.56). The list of parameters includes pressure, pressure gradient and dynamic pressure response during muscle contraction at identified locations. These parameters may be used for biomechanical characterization of female pelvic floor conditions to support an effective management of pelvic floor prolapse.
基金Project supported by National Natural Science Foundation of China( Grant No. 60272081 )
文摘In this paper, an elastic particle mesh (EPM) model is presented. It can be used like a cover to sketch images. EPM offers two advantages: first, when putting on a sketch image, it helps to repair disconnections on salient features. Second, it hides trivial details in the image, thus has the ability of decreasing over-segmentation when used with watershed transformation.
文摘In order to eliminate displacement and elastic deformation between images of adjacent frames in course of 3D ultrasonic image reconstruction, elastic registration based on skeleton feature was adopt in this paper. A new automatically skeleton tracking extract algorithm is presented, which can extract connected skeleton to express figure feature. Feature points of connected skeleton are extracted automatically by accounting topical curvature extreme points several times. Initial registration is processed according to barycenter of skeleton. Whereafter, elastic registration based on radial basis function are processed according to feature points of skeleton. Result of example demonstrate that according to traditional rigid registration, elastic registration based on skeleton feature retain natural difference in shape for organr s different part, and eliminate slight elastic deformation between frames caused by image obtained process simultaneously. This algorithm has a high practical value for image registration in course of 3D ultrasound image reconstruction.