Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and...Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and plastic mechanics but not included in elastic theory for rocks and soils. We consider that internal friction exists in both elastic state and plastic state of geotechnical materials,so the mechanical unit of friction material is constituted. Based on study results of soil tests,the paper also proposes that cohesion takes effect first and internal friction works gradually with the increment of deformation. By assuming that the friction coefficient is proportional to the strain,the internal friction is computed. At last,by imitating the linear elastic mechanics,the nonlinear elastic mechanics model of friction material is established,where the shear modulus G is not a constant. The new model and the traditional elastic model are used simultaneously to analyze an elastic foundation. The results indicate that the displacements computed by the new model are less than those from the traditional method,which agrees with the fact and shows that the mechanical units of friction material are suitable for geotechnical material.展开更多
The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material mult...The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites.展开更多
In order to improve the elderly people's quality of life,supporting their walking behaviors is a promising technology.Therefore,based on one ultrasonic motor,a wire-driven series elastic mechanism for walking assi...In order to improve the elderly people's quality of life,supporting their walking behaviors is a promising technology.Therefore,based on one ultrasonic motor,a wire-driven series elastic mechanism for walking assistive system is proposed and investigated in this research.In contrast to tradition,it innovatively utilizes an ultrasonic motor and a wire-driven series elastic mechanism to achieve superior system performances in aspects of simple structure,high torque/weight ratio,quiet operation,quick response,favorable electromagnetic compatibility,strong shock resistance,better safety,and accurately stable force control.The proposed device is mainly composed of an ultrasonic motor,a linear spring,a steel wire,four pulleys and one rotating part.To overcome the ultrasonic motor's insufficient output torque,a steel wire and pulleys are smartly combined to directly magnify the torque instead of using a conventional gear reducer.Among the pulleys,there is one tailored pulley playing an important role to keep the reduction ratio as 4.5 constantly.Meanwhile,the prototype is manufactured and its actual performance is verified by experimental results.In a one-second operating cycle,it only takes 86 ms for this mechanism to output an assistive torque of 1.6 N·m.At this torque,the ultrasonic motor's speed is around 4.1 rad/s.Moreover,experiments with different operation periods have been conducted for different application scenarios.This study provides a useful idea for the application of ultrasonic motor in walking assistance system.展开更多
Non-pneumatic tire appears to have advantages over traditional pneumatic tire in terms of flat proof and maintenance free.A mechanical elastic wheel(MEW) with a non-pneumatic elastic outer ring which functions as air ...Non-pneumatic tire appears to have advantages over traditional pneumatic tire in terms of flat proof and maintenance free.A mechanical elastic wheel(MEW) with a non-pneumatic elastic outer ring which functions as air of pneumatic tire was presented.The structure of MEW was non-inflatable integrated configuration and the effect of hinges was accounted for only in tension. To establish finite element model of MEW, various nonlinear factors, such as geometrical nonlinearity, material nonlinearity and contact nonlinearity, were considered. Load characteristic test was conducted by tyre dynamic test-bed to obtain force-deflection curve. And the finite element model was validated through load characteristic test. Natural dynamic characteristics of the MEW and its influencing factors were investigated based on the finite element model. Simulation results show that the finite element model closely matched experimental wheel. The results also show that natural frequency is related to ground constraints, material properties, loads and torques. Influencing factors as above obviously affect the amplitude of mode of vibration, but have little effect on mode of vibration shape. The results can provide guidance for experiment research, structural optimization of MEW.展开更多
Machining and installation errors are unavoidable in mechanical structures. However, the effect of errors on radial stiffness of the mechanical elastic wheel(ME-Wheel) is not considered in previous studies. To this en...Machining and installation errors are unavoidable in mechanical structures. However, the effect of errors on radial stiffness of the mechanical elastic wheel(ME-Wheel) is not considered in previous studies. To this end, the interval mathematical model and interval finite element model of the ME-Wheel were both established and compared with bench test results. The intercomparison of the influence of the machining and installation errors on the ME-Wheel radial stiffness revealed good consistency among the interval mathematical analysis, interval finite element simulation,and bench test results. Within the interval range of the ME-Wheel machining and installation errors, parametric analysis of the combined elastic rings was performed at different initial radial rigidity values. The results showed that the initial radial stiffness of the flexible tire body significantly influenced the ME-Wheel radial stiffness, and the inverse relationship between the hinge unit length or suspension hub and the radial stiffness was nonlinear. The radial stiffness of the ME-Wheel is predicted by using the interval algorithm for the first time, and the regularity of the radial stiffness between the error and the load on the ME-Wheel is studied, which will lay the foundation for the exact study of the ME-Wheel dynamic characteristics in the future.展开更多
A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromag...A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism.展开更多
Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesi...Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.展开更多
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplif...Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.展开更多
Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are invest...Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are investigated.A non?pneumatic mechanical elastic wheel(NPMEW)is introduced and investigated as a function of static radical stiffness characteristics and contact behavior.A bench test method is utilized to improve the riding comfort and the traction traffic ability of NPMEW based on tire characteristics test rig,and the static radical stiffness characteristics and the contact behavior of NPMEW are compared with that of an insert supporting run?flat tire(ISRFT).The vertical force?deformation curves and deformed shapes and contact areas of the NPMEW and ISRFT are obtained using a set of vertical loads.The contact behavior is evaluated using extracted geometrical and mechanical feature parameters of the two tires.The results indicate that the NPMEW appears to exhibit considerably high radical stiffness,and the numerical value is dependent on the mechanical characteristic of the flexible tire body and hinge units.NPMEW demonstrates more uniform contact pressure than ISRFT within a certain loading range,and it can efficiently mitigate the problem of stress concentration in ISRFT shoulder under heavy load and enhance the wear resistance and ground grip performances.展开更多
This paper presents a probabilistic methodology for linear fracture mechanics analysis of cracked structures. The main focus is on probabilistic aspect related to the nature of crack in material. The methodology invol...This paper presents a probabilistic methodology for linear fracture mechanics analysis of cracked structures. The main focus is on probabilistic aspect related to the nature of crack in material. The methodology involves finite element analysis; sta- tistical models for uncertainty in material properties, crack size, fracture toughness and loads; and standard reliability methods for evaluating probabilistic characteristics of linear elastic fracture parameter. The uncertainty in the crack size can have a significant effect on the probability of failure, particularly when the crack size has a large coefficient of variation. Numerical example is presented to show that probabilistic methodology based on Monte Carlo simulation provides accurate estimates of failure prob- ability for use in linear elastic fracture mechanics.展开更多
In this Paper we have proven the general solution to the equations of linear operatorsAu=f as u=Cv+e . where v satisfies the equation Dv=g and D is adiagonal matrix. Basing on the consstructive proof of Hilbert Nulls...In this Paper we have proven the general solution to the equations of linear operatorsAu=f as u=Cv+e . where v satisfies the equation Dv=g and D is adiagonal matrix. Basing on the consstructive proof of Hilbert Nullstellensat=. we haregiven the mechanical method of constucting C. D and e.and some of the mechanicalalgorithm displacement functions in elasticity are given by this method also .展开更多
The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is...The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is derived in this paper. It indicates that the deeper the pit is excavated, the greater the critical slide angle is. Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction. The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.展开更多
In order to improve the anchoring force of anchors for carbon fiber reinforced polymer(CFRP) tendons further, a new wedge-bond-type anchor for CFRP tendons was developed. The increment in anchoring force induced by th...In order to improve the anchoring force of anchors for carbon fiber reinforced polymer(CFRP) tendons further, a new wedge-bond-type anchor for CFRP tendons was developed. The increment in anchoring force induced by the clamping segment of anchor was studied. Taking the deformation of all parts in clamping segment in the transverse direction into consideration, the calculation formula for the increment of anchoring force was proposed based on the linear elastic hypotheses. The proposed model is verified by experiments and conclusions are drawn that the anchoring force is influenced mainly by the inclination angle of clamping pieces, the length of clamping part and the thickness of bonding medium. Especially, the thickness of bonding medium should be lowered in design to improve the synergistic effect of anchors.展开更多
The space effects of oval-shaped furrow pit slopes were analyzed by the elastic mechanics principle.The interaction of limit equilibrium slope angle,friction coefficient,cohesion and horizontal radius of oval-shaped f...The space effects of oval-shaped furrow pit slopes were analyzed by the elastic mechanics principle.The interaction of limit equilibrium slope angle,friction coefficient,cohesion and horizontal radius of oval-shaped furrow pits has been derived.The oval trumpet-like rock mass is homogeneous and elastic while only loaded by its dead weight.The interaction indicates that the deeper an oval-shaped furrow pit is excavated,the greater the limit equilibrium slope angle.Both the theory base for reducing stripping waste rock in an oval-shaped furrow pit and the basic way to determine the configuration of a stable slope were developed from the mentioned interaction.The theory includes the preceding principles of stability analysis of slopes.Compared with the configuration determined by traditional theory of slope stability,a great quantity of stripping waste rock can be reduced by that determined in this paper under stable conditions.展开更多
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to...To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.展开更多
This paper presents the adaptive mesh finite element estimation method for analyzing 2D linear elastic fracture problems. The mesh is generated by the advancing front method and the norm stress error is taken as a pos...This paper presents the adaptive mesh finite element estimation method for analyzing 2D linear elastic fracture problems. The mesh is generated by the advancing front method and the norm stress error is taken as a posteriori error estimator for the h-type adaptive refinement. The stress intensity factors are estimated by a displacement extrapolation technique. The near crack tip displacements used are obtained from specific nodes of natural six-noded quarter-point elements which are generated around the crack tip defined by the user. The crack growth and its direction are determined by the calculated stress intensity factors. The maximum circumference theory is used for the latter. In evaluating the accuracy of the estimated stress intensity factors, four cases are tested consisting of compact tension specimen, three-point bending specimen, central cracked plate and double edge notched plate. These were carried out and compared to the results from other studies. The crack trajectories of these specimen tests are also illustrated.展开更多
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe...The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.展开更多
The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brittleness using artificial neural networks(ANN). Herein hard rock brittleness is defined using Yagiz'method. A pre...The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brittleness using artificial neural networks(ANN). Herein hard rock brittleness is defined using Yagiz'method. A predictive model is developed using a comprehensive database compiled from 30 years' worth of rock tests at the Earth Mechanics Institute(EMI), Colorado School of Mines. The model is sensitive to density, elastic properties, and P- and S-wave velocities. The results show that the model is a better predictor of rock brittleness than conventional destructive strength-test based models and multiple regression techniques. While the findings have direct implications on intact rock, the methodology can be extrapolated to rock mass problems in both tunneling and underground mining where rock brittleness is an important control.展开更多
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas...To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.展开更多
文摘Internal friction characteristic is one of the basic properties of geotechnical materials and it exists in mechanical elements all the time. However,until now internal friction is only considered in limit analysis and plastic mechanics but not included in elastic theory for rocks and soils. We consider that internal friction exists in both elastic state and plastic state of geotechnical materials,so the mechanical unit of friction material is constituted. Based on study results of soil tests,the paper also proposes that cohesion takes effect first and internal friction works gradually with the increment of deformation. By assuming that the friction coefficient is proportional to the strain,the internal friction is computed. At last,by imitating the linear elastic mechanics,the nonlinear elastic mechanics model of friction material is established,where the shear modulus G is not a constant. The new model and the traditional elastic model are used simultaneously to analyze an elastic foundation. The results indicate that the displacements computed by the new model are less than those from the traditional method,which agrees with the fact and shows that the mechanical units of friction material are suitable for geotechnical material.
文摘The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites.
基金Supported by China Scholarship Council(Grant No.202006830033),Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)of China.
文摘In order to improve the elderly people's quality of life,supporting their walking behaviors is a promising technology.Therefore,based on one ultrasonic motor,a wire-driven series elastic mechanism for walking assistive system is proposed and investigated in this research.In contrast to tradition,it innovatively utilizes an ultrasonic motor and a wire-driven series elastic mechanism to achieve superior system performances in aspects of simple structure,high torque/weight ratio,quiet operation,quick response,favorable electromagnetic compatibility,strong shock resistance,better safety,and accurately stable force control.The proposed device is mainly composed of an ultrasonic motor,a linear spring,a steel wire,four pulleys and one rotating part.To overcome the ultrasonic motor's insufficient output torque,a steel wire and pulleys are smartly combined to directly magnify the torque instead of using a conventional gear reducer.Among the pulleys,there is one tailored pulley playing an important role to keep the reduction ratio as 4.5 constantly.Meanwhile,the prototype is manufactured and its actual performance is verified by experimental results.In a one-second operating cycle,it only takes 86 ms for this mechanism to output an assistive torque of 1.6 N·m.At this torque,the ultrasonic motor's speed is around 4.1 rad/s.Moreover,experiments with different operation periods have been conducted for different application scenarios.This study provides a useful idea for the application of ultrasonic motor in walking assistance system.
基金Project(NHA13002)supported by Explore Research Project of the General Armament Department,ChinaProject(11072106)supported by the National Natural Science Foundation of China
文摘Non-pneumatic tire appears to have advantages over traditional pneumatic tire in terms of flat proof and maintenance free.A mechanical elastic wheel(MEW) with a non-pneumatic elastic outer ring which functions as air of pneumatic tire was presented.The structure of MEW was non-inflatable integrated configuration and the effect of hinges was accounted for only in tension. To establish finite element model of MEW, various nonlinear factors, such as geometrical nonlinearity, material nonlinearity and contact nonlinearity, were considered. Load characteristic test was conducted by tyre dynamic test-bed to obtain force-deflection curve. And the finite element model was validated through load characteristic test. Natural dynamic characteristics of the MEW and its influencing factors were investigated based on the finite element model. Simulation results show that the finite element model closely matched experimental wheel. The results also show that natural frequency is related to ground constraints, material properties, loads and torques. Influencing factors as above obviously affect the amplitude of mode of vibration, but have little effect on mode of vibration shape. The results can provide guidance for experiment research, structural optimization of MEW.
基金Supported by National Natural Science Foundation of China(Grant No.11672127)Major Exploration Project of the General Armaments Department of China(Grant No.NHA13002)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.NP2016412,NP2018403,NT2018002)Jiangsu Provincial Innovation Program for Graduate Education and the Fundamental Research Funds for the Central Universities of China(Grant No.KYLX16_0330)
文摘Machining and installation errors are unavoidable in mechanical structures. However, the effect of errors on radial stiffness of the mechanical elastic wheel(ME-Wheel) is not considered in previous studies. To this end, the interval mathematical model and interval finite element model of the ME-Wheel were both established and compared with bench test results. The intercomparison of the influence of the machining and installation errors on the ME-Wheel radial stiffness revealed good consistency among the interval mathematical analysis, interval finite element simulation,and bench test results. Within the interval range of the ME-Wheel machining and installation errors, parametric analysis of the combined elastic rings was performed at different initial radial rigidity values. The results showed that the initial radial stiffness of the flexible tire body significantly influenced the ME-Wheel radial stiffness, and the inverse relationship between the hinge unit length or suspension hub and the radial stiffness was nonlinear. The radial stiffness of the ME-Wheel is predicted by using the interval algorithm for the first time, and the regularity of the radial stiffness between the error and the load on the ME-Wheel is studied, which will lay the foundation for the exact study of the ME-Wheel dynamic characteristics in the future.
基金Project(50175031) supported by the National Natural Science Foundation of China
文摘A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism.
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.
文摘Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.
基金Project(11672127)supported by the National Natural Science Foundation of ChinaProject(NHAl3002)supported by the Major Exploration Project of the General Armaments Department of China+1 种基金Project(KYCX17_0240)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,ChinaProjects(NP2016412,NP2018403,NT2018002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.
基金supported in part by the National Natural Science Foundations of China (Nos.51605215, 11672127)the National Science Foundations for Post-Doctoral Scientists of China (Nos.2018M630593, 2019T120450)+1 种基金Research Foundations of Nanjing Institute of Technology (Nos. QKJ201707, PTKJ201702)the Qing Lan Project
文摘Conventional pneumatic tires exhibit disadvantages such as puncture,blowout at high speed,pressure maintenance,etc.Owing to these structural inevitable weaknesses,non?pneumatic tires have been developed and are investigated.A non?pneumatic mechanical elastic wheel(NPMEW)is introduced and investigated as a function of static radical stiffness characteristics and contact behavior.A bench test method is utilized to improve the riding comfort and the traction traffic ability of NPMEW based on tire characteristics test rig,and the static radical stiffness characteristics and the contact behavior of NPMEW are compared with that of an insert supporting run?flat tire(ISRFT).The vertical force?deformation curves and deformed shapes and contact areas of the NPMEW and ISRFT are obtained using a set of vertical loads.The contact behavior is evaluated using extracted geometrical and mechanical feature parameters of the two tires.The results indicate that the NPMEW appears to exhibit considerably high radical stiffness,and the numerical value is dependent on the mechanical characteristic of the flexible tire body and hinge units.NPMEW demonstrates more uniform contact pressure than ISRFT within a certain loading range,and it can efficiently mitigate the problem of stress concentration in ISRFT shoulder under heavy load and enhance the wear resistance and ground grip performances.
文摘This paper presents a probabilistic methodology for linear fracture mechanics analysis of cracked structures. The main focus is on probabilistic aspect related to the nature of crack in material. The methodology involves finite element analysis; sta- tistical models for uncertainty in material properties, crack size, fracture toughness and loads; and standard reliability methods for evaluating probabilistic characteristics of linear elastic fracture parameter. The uncertainty in the crack size can have a significant effect on the probability of failure, particularly when the crack size has a large coefficient of variation. Numerical example is presented to show that probabilistic methodology based on Monte Carlo simulation provides accurate estimates of failure prob- ability for use in linear elastic fracture mechanics.
文摘In this Paper we have proven the general solution to the equations of linear operatorsAu=f as u=Cv+e . where v satisfies the equation Dv=g and D is adiagonal matrix. Basing on the consstructive proof of Hilbert Nullstellensat=. we haregiven the mechanical method of constucting C. D and e.and some of the mechanicalalgorithm displacement functions in elasticity are given by this method also .
文摘The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is derived in this paper. It indicates that the deeper the pit is excavated, the greater the critical slide angle is. Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction. The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.
基金Project(BK20140553)supported by Jiangsu Province Science Foundation for Youths,ChinaProject(51478209)supported by the National Natural Science Foundation of China
文摘In order to improve the anchoring force of anchors for carbon fiber reinforced polymer(CFRP) tendons further, a new wedge-bond-type anchor for CFRP tendons was developed. The increment in anchoring force induced by the clamping segment of anchor was studied. Taking the deformation of all parts in clamping segment in the transverse direction into consideration, the calculation formula for the increment of anchoring force was proposed based on the linear elastic hypotheses. The proposed model is verified by experiments and conclusions are drawn that the anchoring force is influenced mainly by the inclination angle of clamping pieces, the length of clamping part and the thickness of bonding medium. Especially, the thickness of bonding medium should be lowered in design to improve the synergistic effect of anchors.
文摘The space effects of oval-shaped furrow pit slopes were analyzed by the elastic mechanics principle.The interaction of limit equilibrium slope angle,friction coefficient,cohesion and horizontal radius of oval-shaped furrow pits has been derived.The oval trumpet-like rock mass is homogeneous and elastic while only loaded by its dead weight.The interaction indicates that the deeper an oval-shaped furrow pit is excavated,the greater the limit equilibrium slope angle.Both the theory base for reducing stripping waste rock in an oval-shaped furrow pit and the basic way to determine the configuration of a stable slope were developed from the mentioned interaction.The theory includes the preceding principles of stability analysis of slopes.Compared with the configuration determined by traditional theory of slope stability,a great quantity of stripping waste rock can be reduced by that determined in this paper under stable conditions.
基金supported by the National Natural Science Foundation of China (No.41271080 and No.41230630)the Western Project Program of the Chinese Academy of Sciences(KZCX2-XB3-19)the open fund of Qinghai Research and Observation Base, Key Laboratory of Highway Construction and Maintenance Technology in Permafrost Region Ministry of Transport, PRC (2012-12-4)
文摘To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.
文摘This paper presents the adaptive mesh finite element estimation method for analyzing 2D linear elastic fracture problems. The mesh is generated by the advancing front method and the norm stress error is taken as a posteriori error estimator for the h-type adaptive refinement. The stress intensity factors are estimated by a displacement extrapolation technique. The near crack tip displacements used are obtained from specific nodes of natural six-noded quarter-point elements which are generated around the crack tip defined by the user. The crack growth and its direction are determined by the calculated stress intensity factors. The maximum circumference theory is used for the latter. In evaluating the accuracy of the estimated stress intensity factors, four cases are tested consisting of compact tension specimen, three-point bending specimen, central cracked plate and double edge notched plate. These were carried out and compared to the results from other studies. The crack trajectories of these specimen tests are also illustrated.
基金The project supported by the National Natural Science Foundation of China (50579081)the Australian Research Council (DP0452681)The English text was polished by Keren Wang
文摘The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
文摘The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brittleness using artificial neural networks(ANN). Herein hard rock brittleness is defined using Yagiz'method. A predictive model is developed using a comprehensive database compiled from 30 years' worth of rock tests at the Earth Mechanics Institute(EMI), Colorado School of Mines. The model is sensitive to density, elastic properties, and P- and S-wave velocities. The results show that the model is a better predictor of rock brittleness than conventional destructive strength-test based models and multiple regression techniques. While the findings have direct implications on intact rock, the methodology can be extrapolated to rock mass problems in both tunneling and underground mining where rock brittleness is an important control.
基金Project(LY13E080021) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2011A610072) supported by the Ningbo Municipal Natural Science Foundation,ChinaProject(XKL14D2063) supported by Subject Program of Ningbo University,China
文摘To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.