Theoretically, the extraction of resonance scattering spectra is performed by a pure elastic scattering function, which is defined as the total scattering function subtracts an appropriate background term. In this pap...Theoretically, the extraction of resonance scattering spectra is performed by a pure elastic scattering function, which is defined as the total scattering function subtracts an appropriate background term. In this paper, we derive a simple and explicit expression of the pure elastic scattering function for the separable geometries immersed in water. It depends on the modal mechanical impedance and acoustic impedance except a phase factor only relative to the geometry Analyses used the new expression leads to two Kinds of resonances with distinguishable character: the elastic-borne wave resonances and the fluid-borne wave resonances. The former depends mainly on elasticity of the object and the fiuid-loading has secondary effect. The later is related closely with the liquid-loading and vanishes if the liquidloading vanishes. This allows us to classify the family of individual resonance correctly. Taking into account the contributions of the fluid-borne wave resonances, we modify the conventional resonance scattering formula by use of the Singularity Expansion Method.展开更多
A new method of elastic articulated objects (human bodies) modeling was presented based on a new conic curve. The model includes 3D object deformable curves which can represent the deformation of human occluding conto...A new method of elastic articulated objects (human bodies) modeling was presented based on a new conic curve. The model includes 3D object deformable curves which can represent the deformation of human occluding contours. The deformation of human occluding contour can be represented by adjusting only four deformation parameters for each limb. Then, the 3D deformation parameters are determined by corresponding 2D contours from a sequence of stereo images. The algorithm presented in this paper includes deformable conic curve parameters determination and the plane, 3D conic curve lying on, parameter determination.展开更多
文摘Theoretically, the extraction of resonance scattering spectra is performed by a pure elastic scattering function, which is defined as the total scattering function subtracts an appropriate background term. In this paper, we derive a simple and explicit expression of the pure elastic scattering function for the separable geometries immersed in water. It depends on the modal mechanical impedance and acoustic impedance except a phase factor only relative to the geometry Analyses used the new expression leads to two Kinds of resonances with distinguishable character: the elastic-borne wave resonances and the fluid-borne wave resonances. The former depends mainly on elasticity of the object and the fiuid-loading has secondary effect. The later is related closely with the liquid-loading and vanishes if the liquidloading vanishes. This allows us to classify the family of individual resonance correctly. Taking into account the contributions of the fluid-borne wave resonances, we modify the conventional resonance scattering formula by use of the Singularity Expansion Method.
基金the Postdoctoral Science Foundation of China(Grant No.20070421018)
文摘A new method of elastic articulated objects (human bodies) modeling was presented based on a new conic curve. The model includes 3D object deformable curves which can represent the deformation of human occluding contours. The deformation of human occluding contour can be represented by adjusting only four deformation parameters for each limb. Then, the 3D deformation parameters are determined by corresponding 2D contours from a sequence of stereo images. The algorithm presented in this paper includes deformable conic curve parameters determination and the plane, 3D conic curve lying on, parameter determination.