期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
Theoretical investigation on the electronic structure,elastic properties, and intrinsic hardness of Si2N20
1
作者 丁迎春 陈敏 +1 位作者 高秀英 蒋孟衡 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期421-430,共10页
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic c... According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod-ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4. 展开更多
关键词 elastic property vickers hardness electronic structure
下载PDF
A first-principles study on electronic structure and elastic properties of Al_4Sr, Mg_2Sr and Mg_(23)Sr_6 phases 被引量:1
2
作者 周惦武 刘金水 彭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2677-2683,共7页
The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al... The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity. 展开更多
关键词 magnesium alloy first-principles calculation electronic structure elastic property
下载PDF
First principles study of electronic structure, chemical bonding and elastic properties of BiOCuS
3
作者 潘留仙 夏庆林 +2 位作者 叶绍龙 丁宁 刘自然 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1197-1202,共6页
The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The cal... The electronic structures, chemical bonding and elastic properties of the tetragonal phase BiOCuS were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the tetragonal phase BiOCuS is an indirect semiconductor with the calculated band gap of about 0.503 eV. The density of states (DOS) and the partial density of states (PDOS) calculations show that the DOS near the Fermi level is mainly from the Cu-3d state. Population analysis suggests that the chemical bonding in BiOCuS has predominantly ionic character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, elastic constants, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that tetragonal phase BiOCuS is mechanically stable and behaves in a ductile manner. 展开更多
关键词 BiOCuS first principles electronic structures chemical bonding elastic properties
下载PDF
First principles calculation of electronic structure, chemical bonding and elastic properties of ultra-incompressible Re_2P
4
作者 王一夫 夏庆林 余燕 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3400-3404,共5页
The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within genera... The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner. 展开更多
关键词 Re2P first principles electronic structures chemical bonding elastic properties
下载PDF
Phase stability,elastic properties and electronic structures of Mg-Y intermetallics from first-principles calculations 被引量:11
5
作者 J.Zhang C.Mao +4 位作者 C.G.Long J.Chen K.Tang M.J.Zhang P.Peng 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期127-133,共7页
The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on... The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg_(24)Y_(5),Mg_(2)Y and MgY are systematically investigated using first-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constants C_(ij) of Mg-Y intermetallics are also calculated,and the bulk modulus B,shear modulus G,Young's modulus E,Poisson ratio v and anisotropy factor A of polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg_(24)Y_(5) presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics. 展开更多
关键词 Magnesium alloys INTERMETALLICS Phase stability elastic properties electronic structure
下载PDF
First-principles Study of Electronic Structures,Elastic Properties and Thermodynamics of the Binary Intermetallics in Mg-Zn-Re-Zr Alloy 被引量:9
6
作者 Gang CHEN Peng ZHANG 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第3期131-139,共9页
The electronic structures,elastic properties and thermodynamics of MgZn_2,Mg_2Y and Mg_2 La have been determined from the first-principle calculations.The calculated heats of formation and cohesive energies show that ... The electronic structures,elastic properties and thermodynamics of MgZn_2,Mg_2Y and Mg_2 La have been determined from the first-principle calculations.The calculated heats of formation and cohesive energies show that Mg_2La has the strongest alloying ability and structural stability.The structural stability mechanism is also explained through the electronic structures of these phases.The ionicity and metallicity of the phases are estimated.The elastic constants are calculated;the bulk moduli,shear moduli.Young's moduli,Poisson's ratio value and elastic anisotropy are derived:and the brittleness.plasticity and anisotropy of these phases are discussed.Gibbs free energy,Debye temperature and heat capacity are calculated and discussed. 展开更多
关键词 电子结构 热力学 合金化 第一性原理 弹性性能 第一原理计算 化合物 二进制
下载PDF
Elastic properties and electronic structures of lanthanide hexaborides 被引量:1
7
作者 段婕 周彤 +3 位作者 张莉 杜际广 蒋刚 王宏斌 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期367-375,共9页
The structural, elastic, and electronic properties of a series of lanthanide hexaborides(Ln B6) have been investigated by performing ab initio calculations based on the density functional theory using the Vienna ab ... The structural, elastic, and electronic properties of a series of lanthanide hexaborides(Ln B6) have been investigated by performing ab initio calculations based on the density functional theory using the Vienna ab initio simulation package.The calculated lattice and elastic constants of Ln B6 are in good agreement with the available experimental data and other theoretical results. The polycrystalline Young's modulus, shear modulus, the ratio of bulk to shear modulus B/G, Poisson's ratios, Zener anisotropy factors, as well as the Debye temperature are calculated, and all of the properties display some regularity with increasing atomic number of lanthanide atoms, whereas anomalies are observed for Eu B6 and Yb B6. In addition, detailed electronic structure calculations are carried out to shed light on the peculiar elastic properties of Ln B6.The total density of states demonstrates the existence of a pseudogap and indicates lower structure stability of Eu B6 and Yb B6 compared with others. 展开更多
关键词 elastic properties electronic structure ab initio calculations thermodynamic properties
下载PDF
The stabilities, electronic structures and elastic properties of Rb-As systems
8
作者 Havva Bogaz Ozisik Kemal Colakoglu +1 位作者 Engin Deligoz Haci Ozisik 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期442-450,共9页
The structural, electronic and elastic properties of Rb As systems (RbAs in NaP, LiAs and AuCu structures, RbAs2 in the MgCu2 structure, Rb3As in NaaAs, Cu3P and Li3Bi structures, and Rb5As4 in the A5B4 structure) a... The structural, electronic and elastic properties of Rb As systems (RbAs in NaP, LiAs and AuCu structures, RbAs2 in the MgCu2 structure, Rb3As in NaaAs, Cu3P and Li3Bi structures, and Rb5As4 in the A5B4 structure) are investigated with the generalized gradient approximation in tile frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young's modulus, the shear modulus, Poisson's ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated. 展开更多
关键词 ab-initio calculations structural properties electronic properties elastic properties Rb As compounds
下载PDF
Ab initio study of the electronic structure and elastic properties of Al_5C_3N
9
作者 徐学文 胡龙 +4 位作者 宇霄 卢遵铭 范英 李养贤 唐成春 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期309-314,共6页
We investigate the electronic structure, chemical bonding and elastic properties of the hexagonal aluminum carbonitride, Al5C3N, by ab initio calculations. Al5C3N is a semiconductor with a narrow indirect gap of 0.81 ... We investigate the electronic structure, chemical bonding and elastic properties of the hexagonal aluminum carbonitride, Al5C3N, by ab initio calculations. Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV. The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and A1 p-N p states. The calculated bulk and Young's moduli are 201 GPa and 292 GPa, which are slightly lower than those of Ti3SiC2. The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97, respectively, which are higher than those of Ti2AlC and Ti2AlN, indicating that Al5C3N is a ductile ceramic. 展开更多
关键词 electronic structure chemical bonding elastic properties DUCTILITY
下载PDF
First-principle investigation on electronic structures and elastic properties of Al-doped MoSi_2
10
作者 刘小良 任意 +1 位作者 徐慧 赵中伟 《Journal of Central South University》 SCIE EI CAS 2010年第5期888-894,共7页
The electronic structures and elastic properties of Al-doped MoSi2 were calculated using the plane wave pseudo-potential method based on the density functional theory,in which the generalized-gradient approximation(GG... The electronic structures and elastic properties of Al-doped MoSi2 were calculated using the plane wave pseudo-potential method based on the density functional theory,in which the generalized-gradient approximation(GGA) was used to describe the exchange-correlation potential.Starting from the elastic constants,bulk modulus,shear modulus,elastic modulus and Poisson ratio of Al-doped MoSi2 were obtained by using the Hill method.The results indicate that conductivity of Al-doped MoSi2 is improved to some extent in comparison with that of pure MoSi2 due to the orbit hybridization of Mo 4d,Al 3p and Si 3p electrons.In addition,calculations show that the elastic modulus and the brittleness of Al-doped MoSi2 are smaller than those of pure MoSi2,which implies that it is feasible to toughen MoSi2 by doping Al.The agreement of the conclusion with experiment shows that the present theory is reasonable. 展开更多
关键词 MOSI2 Al-doping electronic structures elastic properties FIRST-PRINCIPLE
下载PDF
First principles calculation on electronic structure,chemical bonding,elastic and optical properties of novel tungsten triboride
11
作者 王一夫 夏庆林 余燕 《Journal of Central South University》 SCIE EI CAS 2014年第2期500-505,共6页
The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calcul... The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV. 展开更多
关键词 hP24-WB3 first principles calculation electronic structure chemical bonding elastic properties optical properties
下载PDF
Influence of Nb and Mo contents on phase stability and elastic property of β-type Ti-X alloys 被引量:2
12
作者 姚强 孙坚 +1 位作者 邢辉 郭文渊 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第6期1417-1421,共5页
The energetic, electronic structure and elastic property of β-type Ti1-xXx (X=Nb and Mo, x=0.041 7, 0.062 5, 0.125 0, 0.187 5, 0.250 0, 0.312 5 and 0.375) binary alloys were calculated by the method of supercell and ... The energetic, electronic structure and elastic property of β-type Ti1-xXx (X=Nb and Mo, x=0.041 7, 0.062 5, 0.125 0, 0.187 5, 0.250 0, 0.312 5 and 0.375) binary alloys were calculated by the method of supercell and augmented plane waves plus local orbitals within generalized gradient approximation. The elastic moduli of the polycrystals for these Ti1-xXx alloys were calculated from the elastic constants of the single crystal by the Voigt-Reuss-Hill averaging method. Based on the calculated results, the influence of X content on the phase stability and elastic property of β-type Ti1-xXx alloys was investigated. The results show that the phase stability, tetragonal shear constant C′, bulk modulus, elastic modulus and shear modulus of β-type Ti1-xXx alloys increase with an increase of X content monotonously. When the valence electron number of β-type Ti1-xXx alloys is around 4.10, i.e. the content of Nb is 9.87% (molar fraction) in the Ti-Nb alloy and Mo is 4.77% (molar fraction) in Ti-Mo alloy, the tetragonal shear constant is nearly zero. The Ti1-xXx alloys achieve low phase stability and low elastic modulus when the tetragonal shear constant reaches nearly zero. In addition, the phase stability of β-type Ti1-xXx alloys was discussed together with the calculated electronic structure. 展开更多
关键词 钛合金 弹性特性 相位稳定性 电子结构
下载PDF
First principles investigation of binary intermetallics in Mg-Al-Ca-Sn alloy:Stability,electronic structures,elastic properties and thermodynamic properties 被引量:8
13
作者 王峰 孙士杰 +3 位作者 于波 张峰 毛萍莉 刘正 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期203-212,共10页
The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the ... The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions. 展开更多
关键词 Mg-Al alloy first-principles calculation electronic structure elastic properties thermodynamic properties
下载PDF
A first-principles study on electronic structures and elastic properties of metal dopedα-Fe(N)high nitrogen steel 被引量:1
14
作者 Ji-chun Yang Xiang-jun Liu +1 位作者 Gui-xiao Jia Xiao-yang Fu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第1期103-110,共8页
The binding energies,electronic structures and elastic properties of Ti,V,Cr,Mn,Co,Ni and Mg dopedα-Fe(N)systems have been investigated using a first-principles method.The calculated results show that the dopings o... The binding energies,electronic structures and elastic properties of Ti,V,Cr,Mn,Co,Ni and Mg dopedα-Fe(N)systems have been investigated using a first-principles method.The calculated results show that the dopings of Ti,V,Cr and Co improve the stability ofα-Fe(N),and the stability ofα-Fe(N)is slightly weakened by Mn and Ni,and the doping of Mg is disadvantageous.For Ti,V,Cr and Mn dopedα-Fe(N)systems in which the doping metals are on the left side of Fe in the element periodic table andα-Fe(N)systems doped by Co and Ni on the right side of Fe,their corresponding cohesive forces decrease with decreasing atomic radius of the doping species.The obvious interaction exists among M3 d,Fe4s3p3d and N2 p.In these doping systems,metal atoms lose electrons,while N gains electrons.Dopings of Ti,V,Cr and Mn inα-Fe(N)strengthen the interaction between N and the surrounding metals,and it is not apparent for the dopings of Co,Ni and Mg.Elastic calculations of Fe15 MN systems show that,except for the Fe15 MgN system,shear modulus G and Young modulus E of Fe15 MN systems are improved,and the bulk modulus Bslightly decreases,namely,total elastic properties are enhanced.The magnitude change rule of E reflecting the cohesive force between atoms is consistent with that for the binding energies. 展开更多
关键词 First principle High nitrogen steel Metal nitride electronic structure elastic property
原文传递
Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX_2(M= Mo,W;X= O,S,Se,Te):A comparative first-principles study 被引量:5
15
作者 曾范 张卫兵 唐壁玉 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期436-443,共8页
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope... First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible. 展开更多
关键词 transition metal dichalcogenides bilayer structures elastic properties electronic structure
下载PDF
Effect of Cryogenic Treatment on Microstructure and Tribological Property Evolution of Electron Beam Melted Ti6Al4V
16
作者 黄西娜 MA Xiaowen XU Tianyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1010-1017,共8页
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi... Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V. 展开更多
关键词 electron beam melting(EBM) cryogenic treatment MICROstructure vickers hardness tribological property
下载PDF
Study on structural stability,elastic and electronic properties for β-Ti under pressure based on first principles
17
作者 张永梅 张乐婷 赵宇宏 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第2期162-167,共6页
The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti b... The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further con-firmed by the calculation for density of state (DOS). The phase transition pressure of is about 64. 3 GPa, which is consist-ent with other theoretical predictions (63. 7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young?s modulus value of about 30. 01 GPa, which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modu-lus B, shear modulus G, Young’s modulus E,Poisson’s ratio σ,aggregate sound velocities,and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while a descends. β-Ti re-mains ductile by analysis of B/G under considered pressures. 展开更多
关键词 FIRST-PRINCIPLES structural stability elastic property electronic structure TI
下载PDF
First-principles calculations of structural,elastic and electronic properties of AB_(2)type intermetallics in Mg–Zn–Ca–Cu alloy 被引量:10
18
作者 Pingli Mao Bo Yu +2 位作者 Zheng Liu Feng Wang Yang Ju 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第3期256-262,共7页
Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculate... Electronic structure and elastic properties of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory(DFT).The calculated lattice parameters were in good agreement with the experimental and literature values.The calculated heats of formation and cohesive energies shown that MgCu_(2)has the strongest alloying ability and structural stability.The elastic constants of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were calculated,the bulk moduli,shear moduli,Young's moduli and Poisson's ratio were derived.The calculated results shown that MgCu_(2),Mg_(2)Ca and MgZn_(2)are all ductile phases.Among the three phases,MgCu_(2)has the strongest stiffness and the plasticity of MgZn_(2)phase is the best.The density of states(DOS),Mulliken electron occupation number and charge density difference of MgCu_(2),Mg_(2)Ca and MgZn_(2)phases were discussed to analyze the mechanism of structural stability and mechanical properties. 展开更多
关键词 INTERMETALLICS First-principles calculation Structural stability electronic structure elastic property
下载PDF
First-principles calculations of structural,elastic and electronic properties of(TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure 被引量:6
19
作者 Zhi-sheng Nong Hao-yu Wang Jing-chuan Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1405-1414,共10页
To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate th... To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate the structural,elastic,and electronic properties of this alloy at different pressures.The results show that the calculated equilibrium lattice parameters are consistent with the experimental results,and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy differenceΔE and elastic constants increase with increasing pressure.The(TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa.At high pressure,the bulk modulus B shows larger values than the shear modulus G,and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa.Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure,which results in a decrease in the total density of states and a wider electron energy level.This factor is favorable for zero resistance. 展开更多
关键词 first-principles calculations elastic property electronic structure density of states high-entropy alloys high pressure
下载PDF
Electronic,thermodynamic and elastic properties of pyrite RuO_2
20
作者 杨则金 郭云东 +5 位作者 王光昶 李劲 戴伟 刘锦超 程新路 杨向东 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4981-4987,共7页
This paper calculates the elastic, thermodynamic and electronic properties of pyrite (Pa^-3) RuO2 by the plane-wave pseudopotential density functional theory (DFT) method. The lattice parameters, normalized elasti... This paper calculates the elastic, thermodynamic and electronic properties of pyrite (Pa^-3) RuO2 by the plane-wave pseudopotential density functional theory (DFT) method. The lattice parameters, normalized elastic constants, Cauchy pressure, brittle-ductile relations, heat capacity and Debye temperature are successfully obtained. The Murnaghan equation of state shows that pyrite RuO2 is a potential superhard material. Internal coordinate parameter increases with pressure, which disagrees with experimental data. An analysis based on electronic structure and the pseudogap reveals that the bonding nature in RuO2 is a combination of covalent, ionic and metallic bonding. A study of the elastic properties indicates that the pyrite phase is isotropic under usual conditions. The relationship between brittleness and ductility shows that pyrite RuO2 behaves in a ductile matter at zero pressure and the degree of ductility increases with pressure. 展开更多
关键词 elastic property thermodynamic property electronic structure
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部