期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method 被引量:3
1
作者 H.Babaei A.R.Shahidi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期967-976,共10页
Free vibration analysis of quadrilateral multilayered graphene sheets(MLGS) embedded in polymer matrix is carried out employing nonlocal continuum mechanics.The principle of virtual work is employed to derive the eq... Free vibration analysis of quadrilateral multilayered graphene sheets(MLGS) embedded in polymer matrix is carried out employing nonlocal continuum mechanics.The principle of virtual work is employed to derive the equations of motion.The Galerkin method in conjunction with the natural coordinates of the nanoplate is used as a basis for the analysis.The dependence of small scale effect on thickness,elastic modulus,polymer matrix stiffness and interaction coefficient between two adjacent sheets is illustrated.The non-dimensional natural frequencies of skew,rhombic,trapezoidal and rectangular MLGS are obtained with various geometrical parameters and mode numbers taken into account,and for each case the effects of the small length scale are investigated. 展开更多
关键词 Small scale Free vibration. Quadrilateral multilayered graphene sheet. Polymer matrix. Nonlocal elasticity theory
下载PDF
Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments 被引量:2
2
作者 S.Ahmad Fazelzadeh Esmaeal Ghavanloo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期84-91,共8页
Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysuppo... Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference. 展开更多
关键词 Vibration - Single-layered graphene sheet. Ther- mal environment - Nonlocal elasticity theory Relative frequency shift
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部