The pile-soil system is regarded as a visco-elastic half-space embedded pile. Based on the method of continuum mechanics, a nonlinear mathematical model of pile-soil interaction was established-a coupling nonlinear bo...The pile-soil system is regarded as a visco-elastic half-space embedded pile. Based on the method of continuum mechanics, a nonlinear mathematical model of pile-soil interaction was established-a coupling nonlinear boundary value problem. Under the case of horizontal vibration, the nonlinearly dynamical characteristics of pile applying the axis force were studied in horizontal direction in frequency domain. The effects of parameters, especially the axis force on the stiffness were studied in detail. The numerical results suggest that it is possible that the pile applying an axis force will lose its stability. So,the effect of the axis force on the pile is considered.展开更多
The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By a...The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.展开更多
This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basi...This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.展开更多
基金Project supported by the National Natural Science Foundation of China ( No. 50278051) the Shanghai Key Subject Program
文摘The pile-soil system is regarded as a visco-elastic half-space embedded pile. Based on the method of continuum mechanics, a nonlinear mathematical model of pile-soil interaction was established-a coupling nonlinear boundary value problem. Under the case of horizontal vibration, the nonlinearly dynamical characteristics of pile applying the axis force were studied in horizontal direction in frequency domain. The effects of parameters, especially the axis force on the stiffness were studied in detail. The numerical results suggest that it is possible that the pile applying an axis force will lose its stability. So,the effect of the axis force on the pile is considered.
文摘The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.
基金funded by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2016Z015)the Natural Science Foundation of China (No. 41572308)
文摘This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.