On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recov...On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fraction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail.展开更多
Dilation angle is a significant parameter needed for numerical simulation of tunnels.Even though dilation parameter is physically variable and dependent on confinement and experienced shear plastic strain based on the...Dilation angle is a significant parameter needed for numerical simulation of tunnels.Even though dilation parameter is physically variable and dependent on confinement and experienced shear plastic strain based on the existing dilation models,numerical simulations of tunnels and underground openings with constant dilation parameter usually lead to satisfactory results in practical use.This study aims to find out why constant dilation angle is enough under practical conditions to simulate numerically tunnels and underground excavations in spite of the fact that dilation angle is variable in laboratory and experimental scale.With this aim,this work studies how mobilized dilation angle varies in a plastic zone surrounding a tunnel.For the circular tunnel under uniform in situ stress field,the stepwise finite difference approximation analytical solution considering strain softening rock mass behavior with mobilized dilation angle was used to study how mobilized dilation angle varies in plastic zone around tunnel under very different conditions.In practical conditions determined in this study,dilative behavior of all over the plastic zone around the tunnel can be approximated to constant dilation angle in the middle region of the plastic zone.Moreover,the plastic zone displacements for mobilized and constant dilation angle models are compared with each other.Further investigation under more general non-uniform in situ stress conditions and non-circular tunnels is performed by using the commercial finite difference software to numerically simulate the Mine-by experimental tunnel of AECL(Atomic Energy of Canada Limited)and the arched tunnel.Although the Mine-by and arched tunnels were numerically simulated based on the mobilized dilation angle model,the variability associated with dilation angle around the simulated Mine-by and arched tunnels is insignificant,and dilation angle is approximately constant in the plastic zone.展开更多
The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be u...The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be used at the elasticplastic boundary has been corrected.The reasonable solution of the plastic stresses near the crack line region has been established.By matching the plastic stresses with the exact elastic stresses at the elastic-plastic boundary,the plastic stresses the length of the plastic zone and the unit normal vector of the elastic-plastic boundary near the crock line region have been obtained for a mode I crack under uniaxial tension,as well as a mode I crack under biaxial tension,which shows that for both conditions the plastic stress componentsσy, and σsy.he length of the plastic zone and the unit normal vector of the elastic-plastic boundary are quite the same while the plastic stress σs is different.展开更多
Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions n...Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.展开更多
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here...There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.展开更多
The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of...The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0).展开更多
The elastic-plastic stress distribution and the elastic-plastic boundary con- figuration near a crack surface region are significant but hard to obtain by means of the conventional analysis. A crack line analysis meth...The elastic-plastic stress distribution and the elastic-plastic boundary con- figuration near a crack surface region are significant but hard to obtain by means of the conventional analysis. A crack line analysis method is developed in this paper by consid- ering the crack surface as an extension of the crack line. The stresses in the plastic zone, the length, and the unit normal vector of the elastic-plastic boundary near a crack surface region are obtained for an antiplane crack in an elastic-perfectly plastic solid. The usual small scale yielding assumptions are not needed in the analysis.展开更多
The gradient nanostructure is machined on the aluminum(Al)alloy by the two-dimensional ultrasonic surface burnishing process(2D-USBP).The mechanism of why the gradient nanostructure enhances wear resistance is investi...The gradient nanostructure is machined on the aluminum(Al)alloy by the two-dimensional ultrasonic surface burnishing process(2D-USBP).The mechanism of why the gradient nanostructure enhances wear resistance is investigated.The mechanical properties and microstructure characterization for the gradient nanostructure are performed by operating a nanoindenter,transmission electron microscopy(TEM),and electron backscattered diffraction(EBSD).Dry wear tests are performed on the samples before and after machining to evaluate the wear resistance and mechanisms.The effect of the gradient nanostructure on the wear resistance is explored by developing the crystal plasticity(CP)finite element and molecular dynamics(MD)models.The characterization results show that the 2D-USBP sample prepared a gradient structure of~600μm thick on the aluminum surface,increasing the surface hardness from 1.13 to 1.71 GPa and reducing the elastic modulus from 78.84 to 70.14 GPa.The optimization of the surface microstructure and the increase of the mechanical properties effectively enhance the wear resistance of the sample,with 41.20%,39.07%,and 54.58% of the wear scar areas for the 2D-USBP treated samples to the original samples under 5,10,and 15 N loads,respectively.The gradient nanostructure hinders the slip of dislocations inside the sample during the wear process and reduces the size and scope of plastic deformation;meanwhile,the resistance to deformation,adhesion,and crack initiation and propagation of the sample surface is improved,resulting in enhanced wear resistance.展开更多
A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method ...A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method used to evaluate rockburst in hard coal seams is not applicable to soft coal seams. This paper established an energy integral model for the rockburst-inducing area and a friction work calculation model for the plastic area. If the remaining energy after the coal seam is broken in the rockburstinducing area is greater than the friction work required for the coal to burst out, then a rockburst accident will occur. Mechanisms of ‘‘quaking without bursting" and ‘‘quaking and bursting" are clarified for soft coal seams and corresponding control measures are proposed as the optimization of roadway layouts and use of ‘‘three strong systems"(strong de-stressing, strong supporting, and strong monitoring).展开更多
Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transv...Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transversely isotropic media.Considering argillite's anisotropy and inelastic deformational properties,theoretical formulae for calculating oriented elastic parameters were deduced by the unloading curves,which can be better fitted for the description of its elasticity than loading curves.Test results indicate that with the growth of accumulated plastic,strain,the apparent elastic modulus of argillite decreases in a form of exponential decay function,whereas the apparent Poisson ratio increase in a form of power equation.A ratio of unloading recoverable strain to the total strain increment occurred during a loading cycle is defined to illustrate the characteristic relations between anisotropic coupled elasto-plastic deformation and plastic strain.It is significant to observe that high stress level and plastic history have an inhibiting effect on argillite anisotropy.展开更多
For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyz...For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyzed,and the proportional superposition of energy in pure elasticity and pure plasticity during indentation was considered based on the equivalence of energy density.Subsequently,a Proportional Superposition-based Elasto Plastic Model(PS-EPM)was developed to describe the relationships between the displacement and the load during the ball indentation.Furthermore,a new test method of Ball Indentation based on Elastoplastic Proportional Superposition(BI-EPS)was developed to obtain the constitutive relationships of R-O law materials.The load–displacement curves predicted using the PS-EPM model were found to agree closely with the Finite Element Analysis(FEA)results.Moreover,the stress vs.strain curves predicted using the BI-EPS method were in better agreement with those obtained by FEA.Additionally,ball indentation was performed on eleven types of metal materials including five types of aluminum alloys and six types of steel.The test results showed that the stress vs.strain relationships and the tensile strength values predicted using the proposed BI-EPS method agreed well with the results obtained using conventional uniaxial tensile tests.展开更多
基金supported by the National Natural Science Foundation of China (No.50705067)the Ph.D. Programs Foundation of the Ministry of Education of China (No.20070247013)
文摘On the basis of continuum mechanics and the Mori-Tanaka mean field theory, a micro-mechanical flow stress model that considered both the transformation-induced plasticity (TRIP) effect and the inelastic strain recovery behavior of TRIP multiphase steels was presented. The relation between the volume fraction of constituent phases and plastic strain was introduced to characterize the transformation-induced plasticity effect of TRIP steels. Loading-unloading-reloading uniaxial tension tests of TRIP600 steel were carried out and the strain recovery behavior after unloading was analyzed. From the experimental data, an empirical elastic modulus expression is extracted to characterize the inelastic strain recovery. A comparison of the predicted flow stress with the experimental data shows a good agreement. The mechanism of the transformation-induced plasticity effect and the inelastic recovery effect acting on the flow stress is also discussed in detail.
文摘Dilation angle is a significant parameter needed for numerical simulation of tunnels.Even though dilation parameter is physically variable and dependent on confinement and experienced shear plastic strain based on the existing dilation models,numerical simulations of tunnels and underground openings with constant dilation parameter usually lead to satisfactory results in practical use.This study aims to find out why constant dilation angle is enough under practical conditions to simulate numerically tunnels and underground excavations in spite of the fact that dilation angle is variable in laboratory and experimental scale.With this aim,this work studies how mobilized dilation angle varies in a plastic zone surrounding a tunnel.For the circular tunnel under uniform in situ stress field,the stepwise finite difference approximation analytical solution considering strain softening rock mass behavior with mobilized dilation angle was used to study how mobilized dilation angle varies in plastic zone around tunnel under very different conditions.In practical conditions determined in this study,dilative behavior of all over the plastic zone around the tunnel can be approximated to constant dilation angle in the middle region of the plastic zone.Moreover,the plastic zone displacements for mobilized and constant dilation angle models are compared with each other.Further investigation under more general non-uniform in situ stress conditions and non-circular tunnels is performed by using the commercial finite difference software to numerically simulate the Mine-by experimental tunnel of AECL(Atomic Energy of Canada Limited)and the arched tunnel.Although the Mine-by and arched tunnels were numerically simulated based on the mobilized dilation angle model,the variability associated with dilation angle around the simulated Mine-by and arched tunnels is insignificant,and dilation angle is approximately constant in the plastic zone.
文摘The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be used at the elasticplastic boundary has been corrected.The reasonable solution of the plastic stresses near the crack line region has been established.By matching the plastic stresses with the exact elastic stresses at the elastic-plastic boundary,the plastic stresses the length of the plastic zone and the unit normal vector of the elastic-plastic boundary near the crock line region have been obtained for a mode I crack under uniaxial tension,as well as a mode I crack under biaxial tension,which shows that for both conditions the plastic stress componentsσy, and σsy.he length of the plastic zone and the unit normal vector of the elastic-plastic boundary are quite the same while the plastic stress σs is different.
基金supported by the National Natural Science Foundation of China (No.10672196)
文摘Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.
基金support from the National Key Research and Development Program of China(Nos.2023YFC2907300 and 2019YFE0118500)the National Natural Science Foundation of China(Nos.U22A20598 and 52104107)the Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.
基金The present work is supported by the National Natural Science Foundation of China
文摘The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0).
基金supported by the National Natural Science Foundation of China (No.10672196)
文摘The elastic-plastic stress distribution and the elastic-plastic boundary con- figuration near a crack surface region are significant but hard to obtain by means of the conventional analysis. A crack line analysis method is developed in this paper by consid- ering the crack surface as an extension of the crack line. The stresses in the plastic zone, the length, and the unit normal vector of the elastic-plastic boundary near a crack surface region are obtained for an antiplane crack in an elastic-perfectly plastic solid. The usual small scale yielding assumptions are not needed in the analysis.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52175194,52105215,and 52075047)Zhejiang Provincial Natural Science Foundation of China(LR23E050002).
文摘The gradient nanostructure is machined on the aluminum(Al)alloy by the two-dimensional ultrasonic surface burnishing process(2D-USBP).The mechanism of why the gradient nanostructure enhances wear resistance is investigated.The mechanical properties and microstructure characterization for the gradient nanostructure are performed by operating a nanoindenter,transmission electron microscopy(TEM),and electron backscattered diffraction(EBSD).Dry wear tests are performed on the samples before and after machining to evaluate the wear resistance and mechanisms.The effect of the gradient nanostructure on the wear resistance is explored by developing the crystal plasticity(CP)finite element and molecular dynamics(MD)models.The characterization results show that the 2D-USBP sample prepared a gradient structure of~600μm thick on the aluminum surface,increasing the surface hardness from 1.13 to 1.71 GPa and reducing the elastic modulus from 78.84 to 70.14 GPa.The optimization of the surface microstructure and the increase of the mechanical properties effectively enhance the wear resistance of the sample,with 41.20%,39.07%,and 54.58% of the wear scar areas for the 2D-USBP treated samples to the original samples under 5,10,and 15 N loads,respectively.The gradient nanostructure hinders the slip of dislocations inside the sample during the wear process and reduces the size and scope of plastic deformation;meanwhile,the resistance to deformation,adhesion,and crack initiation and propagation of the sample surface is improved,resulting in enhanced wear resistance.
基金Financial supports for this work by the National Program on Key Basic Research Project (No.210CB226800)the National Natural Science Foundation of China (Nos.51274022 and 51174016)
文摘A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method used to evaluate rockburst in hard coal seams is not applicable to soft coal seams. This paper established an energy integral model for the rockburst-inducing area and a friction work calculation model for the plastic area. If the remaining energy after the coal seam is broken in the rockburstinducing area is greater than the friction work required for the coal to burst out, then a rockburst accident will occur. Mechanisms of ‘‘quaking without bursting" and ‘‘quaking and bursting" are clarified for soft coal seams and corresponding control measures are proposed as the optimization of roadway layouts and use of ‘‘three strong systems"(strong de-stressing, strong supporting, and strong monitoring).
基金Program(2011CB710601) supported by National Basic Research Program of ChinaProject(50925933) supported by National Natural Science Foundation of China+1 种基金Project(2008BAB29B03) supported by National Key Technology Research and Development Program of ChinaProject(2010-122-011) supported by Guizhou Provincial Department of Transportation,China
文摘Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transversely isotropic media.Considering argillite's anisotropy and inelastic deformational properties,theoretical formulae for calculating oriented elastic parameters were deduced by the unloading curves,which can be better fitted for the description of its elasticity than loading curves.Test results indicate that with the growth of accumulated plastic,strain,the apparent elastic modulus of argillite decreases in a form of exponential decay function,whereas the apparent Poisson ratio increase in a form of power equation.A ratio of unloading recoverable strain to the total strain increment occurred during a loading cycle is defined to illustrate the characteristic relations between anisotropic coupled elasto-plastic deformation and plastic strain.It is significant to observe that high stress level and plastic history have an inhibiting effect on argillite anisotropy.
基金co-supported by the National Natural Science Foundation of China(Nos.11872320 and 12072294)。
文摘For a homogeneous,continuous,and isotropic material whose constitutive relationships meets with the Ramberg-Osgood law(R-O law),the energy in the elastoplastic indentation with a ball indenter was theoretically analyzed,and the proportional superposition of energy in pure elasticity and pure plasticity during indentation was considered based on the equivalence of energy density.Subsequently,a Proportional Superposition-based Elasto Plastic Model(PS-EPM)was developed to describe the relationships between the displacement and the load during the ball indentation.Furthermore,a new test method of Ball Indentation based on Elastoplastic Proportional Superposition(BI-EPS)was developed to obtain the constitutive relationships of R-O law materials.The load–displacement curves predicted using the PS-EPM model were found to agree closely with the Finite Element Analysis(FEA)results.Moreover,the stress vs.strain curves predicted using the BI-EPS method were in better agreement with those obtained by FEA.Additionally,ball indentation was performed on eleven types of metal materials including five types of aluminum alloys and six types of steel.The test results showed that the stress vs.strain relationships and the tensile strength values predicted using the proposed BI-EPS method agreed well with the results obtained using conventional uniaxial tensile tests.