To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction...To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures.展开更多
The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/p...The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.展开更多
Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the inter...Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the interior of a semi-infnite solid were obtained by means of classical displacement function method in elasticity.The factors which influence stress of bolted surrounding rock,such as the length of bolt and tray effect,were analyzed.The absolute value of stress along bolt axes decreased rapidly with an increase in radical distance and the maximum appeared near ends of bolt.With increasing radical distance,the value of radical stress changed from positive to negative roughly and then increased to zero,with maximum at the middle of bolt.The evolution of hoop stress as radical distance increasing was similar with stress along bolt axes.With an increase in depth,the radical effect ranges of all normal stress components were reduced.These suggest that the effect from tray on stress along bolt axes of bolted surrounding rock could be neglected,except near surface of surrounding rock.展开更多
The superstructures of marine structures supported by the elastic legs and located in the splash zone will subject to violent wave slamming and vibrate consequently during storms. A series of model tests are carried o...The superstructures of marine structures supported by the elastic legs and located in the splash zone will subject to violent wave slamming and vibrate consequently during storms. A series of model tests are carried out to investigate the wave impacting on the open structures supported elastically. Three kinds of models with different natural frequencies are designed. The characteristics of the wave pressures on the three models are compared. The durations of the uplift forces and the corresponding accelerations of the structure during wave impact are analyzed simultaneously. The distributions of the peak impact pressures on the subfaces of the plates with different supporting stiffness are given. The relationship between the uplift force on the three models and the relative clearance are obtained. The spectral properties of the slamming loads on the three different structures are compared, The experimental results indicate that the behaviors of the impact pressures, the uplift forces and accelerations of the plates with small natural frequencies are obviously different from those of the plates with larger natural frequencies within the range of the experimental parameters.展开更多
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t...The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.展开更多
This paper studies the vibration absorber for a fluid-conveying pipe,where the lever-type nonlinear energy sink(LNES)and spring supports are coupled to the asymmetric ends of the system.The pseudo-arc-length method in...This paper studies the vibration absorber for a fluid-conveying pipe,where the lever-type nonlinear energy sink(LNES)and spring supports are coupled to the asymmetric ends of the system.The pseudo-arc-length method integrated with the harmonic balance method is used to investigate the steady-state responses analytically.Meanwhile,the numerical solution of the fluid-conveying pipe is calculated with the Runge-Kutta method.Moreover,a special response,called the collapsible closed detached response(CCDR),is first observed when the vibration response of mechanical structures is studied.Then,the relationship between the CCDR and the main structure primary response(PR)is obtained.In addition,the closed detached response(CDR)is also observed to research the resonance response of the fluid-conveying pipe.The appearance of either the CCDR or the CDR does affect the resonance attenuation.Furthermore,the mentioned two phenomena underline that the trend of vibration responses under external excitation goes continuous and gradual.Besides,the main advantage of the LNES is presented by contrasting the LNES with the nonlinear energy sink(NES)coupled to the same pipe system.It is found that the LNES can reduce the resonance response amplitude by 91.33%.展开更多
This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure durin...This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.展开更多
The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral...The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects,the relationship of force versus displacement is established. In the formulation of finite element method (FEM),the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the Bernoulli-Euler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method,and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.展开更多
In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperat...In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperature distribution is determined by the heat conduction differential equation and its corresponding boundary conditions by employing a unified integral transform technique by use of Mathieu functions and modified Mathieu functions. The solution of thermally induced vibration of the plate with both ends encased with elastic supports is obtained by employing an integral transform for double Laplace differential equation. The thermal moment is derived on the basis of temperature distribution, and its stresses are obtained based on resultant bending moments per unit width. The numerical calculations of the distributions of the transient temperature and its associated stress distributions are shown in the figures.展开更多
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here...There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.展开更多
The support layer is an important component of twin-block ballastless track. The modulus of the support layer is an important design parameter and must be carefully solved. We studied the bending stress and deformatio...The support layer is an important component of twin-block ballastless track. The modulus of the support layer is an important design parameter and must be carefully solved. We studied the bending stress and deformation of track slab and support layer due to train load using the beam-plate finite element model on elastic foundation. The results show that support layer type has great impact on both support layer deformation and the stress on subgrade, but has little impact on the bending stress of either track slab or support layer. The continuous support layer type, and articulated support layer type with shear transfer device at their ends, are recommended. In order to keep the stress in the support layer less than that in track slab, the modulus of the continuous, unit, and articulated types of support layer ( in unit twin-block ballastless track), and the support layer in continuous twin-block ballastless track, should not be larger than 15, 22, 20.5 and 5 GPa, respectively. In addition, the modulus of the unit-type support layer should not be more than 20 GPa, to ensure the step in support layer remains less than 1 mm.展开更多
This paper presents presents a new analytical solution of transverse vibration ofrectangular plaies simply supported at two opposite edges with arbitrary number ofelastic line supports in one way. The reaction forces ...This paper presents presents a new analytical solution of transverse vibration ofrectangular plaies simply supported at two opposite edges with arbitrary number ofelastic line supports in one way. The reaction forces of the elastic line supports areregarded as foe unknown external forces acted on the plate. The analytical solution ofthe differential equation of motion of the rectangular plate, which includes theunknown reaction forces. is gained. The frequency' equation is derived by using thelinear relationships between the reaction forces of the elastic line supports and thetransverse displacements of the plale along the elastic line supports. Therepresentations of foe frequency equation and the mode shape functions are differentfrom those obtained by other methods.展开更多
This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is...This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is presented for calculating inherent frequencies and mode shape of rectangular platen elaslically supported at points. The number and location of these points on free edges may be completely arbitrary. This paper uses impulse function to represent reaction and moment at points. Fourter series is used to expand the impulse function along the edges. Characteristic equations satisfying all boundary conditions are given.Inherent frequencies and mode shape with any accutacy can be gained.展开更多
A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are re...A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are represented as an elastic foundation with radial and tangential uniform distributed stiffness,and the ring gear of planet set Ⅱ is modeled as an elastic continuum body. The natural frequencies based on the eigenvalue problem of dynamic model of planetary transmission are solved and the associated vibration modes are discussed. The rules are revealed which are the influences of the ring gear elastic supports stiffness and rim thickness on natural frequencies of planetary transmission. The theoretical analysis indicates that the vibration modes of planetary transmission with thin-walled ring gear on elastic supports are classified into seven types: Ⅰ/Ⅱ stage coupled rotational mode,Ⅰ stage translational mode,Ⅰ stage planet mode,Ⅱ stage translational mode,Ⅱ stage degenerate planet mode,Ⅱ stage distinct planet mode and purely ring gear mode. For each vibration mode, its properties are summarized. The numerical solutions show that the elastic supports stiffness and rim thickness of the ring gear of planet set Ⅱ have different influences on natural frequencies.展开更多
This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external force...This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external forces acting on the membranes. The exact solution of the equation of motion is given which includes terms representing the unknown reaction forces. The frequency equation is derived by the use of the linear relationship of the displacements with the reaction forces of elastical supports at points. Finally the calculating formulae of the frequency equation of circular membranes are analytically performed as examples and the inherent frequencies of circular membranes with symmetric elastical supports at two points are numerically calculated.展开更多
An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, ar...An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bi- furcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bi- furcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.展开更多
In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)meth...In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)method is applied to solve the governing vibration equation derived based on Euler–Bernoulli beam theory subject to the elastic foundation and boundary conditions.As a result,a general set of second-order ordinary differential equations emerges,and by appropriately setting the stiffness of the end springs,one can easily study the dynamics of various systems with classical or non-classical bound-ary conditions.The numerical simulations are conducted to study the pipe instability performance with respect to various boundary conditions,elastic support parameters,elastic foundation parameters and fluid mass ratios.The numerical model is validated by comparison with published data.It is found that the elastic support boundary conditions have significant effects on the stability of pipe resting on elas-tic foundation.The pipe stability performance is very sensitive to the two elastic foundation parameters.Larger fluid mass ratio enhances the pipe flutter stability performance but has no effects on the diver-gence.展开更多
We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. M...We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. Material properties of the FG plate are graded in the thickness direction and assumed to obey a power law distribution of the volume fraction of the constituents. To set up the global eigenvalue equation, the plate is divided into sub-domains or elements and the generalized differential quadrature procedure is applied to discretize the governing, boundary and compatibility equations. By assembling discrete equations at all nodal points, the weighting coefficient and force matrices are derived. To validate the accuracy of this method, the results are compared with those of the exact solution and the finite element method. At the end, the effects of different variables and local elastic support arrangements on the buckling load factor are investigated.展开更多
Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which...Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regularization.展开更多
Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of con...Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length.Based on Rayleigh’s quotient,an iterative strategy is developed to find the approximated torsional stiffness coefficients,which allows the reconciliation between the theoretical model results and the experimental ones,obtained through impact tests.The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh’s quotient but also on the mode shapes,considering the shape functions defined in branches.Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.展开更多
基金National Natural Science Foundation of China(Grant Nos.52075111,51775123)Fundamental Research Funds for the Central Universities(Grant No.3072022JC0701)。
文摘To enhance flow stability and reduce hydrodynamic noise caused by fluctuating pressure,a quasiperiodic elastic support skin composed of flexible walls and elastic support elements is proposed for fluid noise reduction.The arrangement of the elastic support element is determined by the equivalent periodic distance and quasi-periodic coefficient.In this paper,a dynamic model of skin in a fluid environment is established.The influence of equivalent periodic distance and quasi-periodic coefficient on flow stability is investigated.The results suggest that arranging the elastic support elements in accordance with the quasi-periodic law can effectively enhance flow stability.Meanwhile,the hydrodynamic noise calculation results demonstrate that the skin exhibits excellent noise reduction performance,with reductions of 10 dB in the streamwise direction,11 dB in the spanwise direction,and 10 dB in the normal direction.The results also demonstrate that the stability analysis method can serve as a diagnostic tool for flow fields and guide the design of noise reduction structures.
基金supported by the National Natural Science Foundation of China(No.51405393)
文摘The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.
基金supported by the Special Funds of the National Natural Science Foundation of China(No.51227003)the National Natural Science Foundation of China(No.51074166)the Universities Natural Science Research Project of Jiangsu Province(No.11kjd13002)
文摘Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the interior of a semi-infnite solid were obtained by means of classical displacement function method in elasticity.The factors which influence stress of bolted surrounding rock,such as the length of bolt and tray effect,were analyzed.The absolute value of stress along bolt axes decreased rapidly with an increase in radical distance and the maximum appeared near ends of bolt.With increasing radical distance,the value of radical stress changed from positive to negative roughly and then increased to zero,with maximum at the middle of bolt.The evolution of hoop stress as radical distance increasing was similar with stress along bolt axes.With an increase in depth,the radical effect ranges of all normal stress components were reduced.These suggest that the effect from tray on stress along bolt axes of bolted surrounding rock could be neglected,except near surface of surrounding rock.
基金supported by the National Natural Science Foundation of China(Grant No.51179030)the Innovative Research Group National Natural Science Foundation of China(Grant No.51309056)
文摘The superstructures of marine structures supported by the elastic legs and located in the splash zone will subject to violent wave slamming and vibrate consequently during storms. A series of model tests are carried out to investigate the wave impacting on the open structures supported elastically. Three kinds of models with different natural frequencies are designed. The characteristics of the wave pressures on the three models are compared. The durations of the uplift forces and the corresponding accelerations of the structure during wave impact are analyzed simultaneously. The distributions of the peak impact pressures on the subfaces of the plates with different supporting stiffness are given. The relationship between the uplift force on the three models and the relative clearance are obtained. The spectral properties of the slamming loads on the three different structures are compared, The experimental results indicate that the behaviors of the impact pressures, the uplift forces and accelerations of the plates with small natural frequencies are obviously different from those of the plates with larger natural frequencies within the range of the experimental parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No.10872163)the Natural Science Foundation of Education Department of Shaanxi Province (Grant No.08JK394)
文摘The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.
基金Project supported by the National Natural Science Foundation of China (Nos.11902203 and 12022213)the General Scientific Research Foundation of Liaoning Educational Committee (No.JYT2020035)。
文摘This paper studies the vibration absorber for a fluid-conveying pipe,where the lever-type nonlinear energy sink(LNES)and spring supports are coupled to the asymmetric ends of the system.The pseudo-arc-length method integrated with the harmonic balance method is used to investigate the steady-state responses analytically.Meanwhile,the numerical solution of the fluid-conveying pipe is calculated with the Runge-Kutta method.Moreover,a special response,called the collapsible closed detached response(CCDR),is first observed when the vibration response of mechanical structures is studied.Then,the relationship between the CCDR and the main structure primary response(PR)is obtained.In addition,the closed detached response(CDR)is also observed to research the resonance response of the fluid-conveying pipe.The appearance of either the CCDR or the CDR does affect the resonance attenuation.Furthermore,the mentioned two phenomena underline that the trend of vibration responses under external excitation goes continuous and gradual.Besides,the main advantage of the LNES is presented by contrasting the LNES with the nonlinear energy sink(NES)coupled to the same pipe system.It is found that the LNES can reduce the resonance response amplitude by 91.33%.
基金support from the National Natural Science Foundation of China (Nos. 51579103 and 51709118)the China Postdoctoral Science Foundation (No. 2017M612669)+2 种基金the Fundamental Research Funds for the Central Universities (No. 2017BQ089)the Key Scientific Research Projects in Henan Province (No. 18B570005)the Open Research Foundation of Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation, Ministry of Water Resources ([2017]KJ01)
文摘This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.
基金Sponsored by the National Key Technology Research and Development Program (Grant No.2006BAJ12B03-2)
文摘The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects,the relationship of force versus displacement is established. In the formulation of finite element method (FEM),the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the Bernoulli-Euler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method,and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.
文摘In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperature distribution is determined by the heat conduction differential equation and its corresponding boundary conditions by employing a unified integral transform technique by use of Mathieu functions and modified Mathieu functions. The solution of thermally induced vibration of the plate with both ends encased with elastic supports is obtained by employing an integral transform for double Laplace differential equation. The thermal moment is derived on the basis of temperature distribution, and its stresses are obtained based on resultant bending moments per unit width. The numerical calculations of the distributions of the transient temperature and its associated stress distributions are shown in the figures.
基金support from the National Key Research and Development Program of China(Nos.2023YFC2907300 and 2019YFE0118500)the National Natural Science Foundation of China(Nos.U22A20598 and 52104107)the Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.
基金The National Natural Science Foundation of China(Director Program)(No.50848015)the Innovative Research Team Incubation Financing Projects of Southwest Jiaotong University(No.2007IRT06)
文摘The support layer is an important component of twin-block ballastless track. The modulus of the support layer is an important design parameter and must be carefully solved. We studied the bending stress and deformation of track slab and support layer due to train load using the beam-plate finite element model on elastic foundation. The results show that support layer type has great impact on both support layer deformation and the stress on subgrade, but has little impact on the bending stress of either track slab or support layer. The continuous support layer type, and articulated support layer type with shear transfer device at their ends, are recommended. In order to keep the stress in the support layer less than that in track slab, the modulus of the continuous, unit, and articulated types of support layer ( in unit twin-block ballastless track), and the support layer in continuous twin-block ballastless track, should not be larger than 15, 22, 20.5 and 5 GPa, respectively. In addition, the modulus of the unit-type support layer should not be more than 20 GPa, to ensure the step in support layer remains less than 1 mm.
文摘This paper presents presents a new analytical solution of transverse vibration ofrectangular plaies simply supported at two opposite edges with arbitrary number ofelastic line supports in one way. The reaction forces of the elastic line supports areregarded as foe unknown external forces acted on the plate. The analytical solution ofthe differential equation of motion of the rectangular plate, which includes theunknown reaction forces. is gained. The frequency' equation is derived by using thelinear relationships between the reaction forces of the elastic line supports and thetransverse displacements of the plale along the elastic line supports. Therepresentations of foe frequency equation and the mode shape functions are differentfrom those obtained by other methods.
文摘This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is presented for calculating inherent frequencies and mode shape of rectangular platen elaslically supported at points. The number and location of these points on free edges may be completely arbitrary. This paper uses impulse function to represent reaction and moment at points. Fourter series is used to expand the impulse function along the edges. Characteristic equations satisfying all boundary conditions are given.Inherent frequencies and mode shape with any accutacy can be gained.
基金Innovation Funded Project of Fujian Province,China(No.2015C0030)Natural Science Foundation of Guangdong Province,China(No.S2013020013855)
文摘A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are represented as an elastic foundation with radial and tangential uniform distributed stiffness,and the ring gear of planet set Ⅱ is modeled as an elastic continuum body. The natural frequencies based on the eigenvalue problem of dynamic model of planetary transmission are solved and the associated vibration modes are discussed. The rules are revealed which are the influences of the ring gear elastic supports stiffness and rim thickness on natural frequencies of planetary transmission. The theoretical analysis indicates that the vibration modes of planetary transmission with thin-walled ring gear on elastic supports are classified into seven types: Ⅰ/Ⅱ stage coupled rotational mode,Ⅰ stage translational mode,Ⅰ stage planet mode,Ⅱ stage translational mode,Ⅱ stage degenerate planet mode,Ⅱ stage distinct planet mode and purely ring gear mode. For each vibration mode, its properties are summarized. The numerical solutions show that the elastic supports stiffness and rim thickness of the ring gear of planet set Ⅱ have different influences on natural frequencies.
文摘This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external forces acting on the membranes. The exact solution of the equation of motion is given which includes terms representing the unknown reaction forces. The frequency equation is derived by the use of the linear relationship of the displacements with the reaction forces of elastical supports at points. Finally the calculating formulae of the frequency equation of circular membranes are analytically performed as examples and the inherent frequencies of circular membranes with symmetric elastical supports at two points are numerically calculated.
文摘An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bi- furcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bi- furcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.
文摘In this study,the vibration stability of fluid conveying pipe resting on two-parameter foundation is in-vestigated under four different elastic support boundary conditions.The harmonic differential quadrature(HDQ)method is applied to solve the governing vibration equation derived based on Euler–Bernoulli beam theory subject to the elastic foundation and boundary conditions.As a result,a general set of second-order ordinary differential equations emerges,and by appropriately setting the stiffness of the end springs,one can easily study the dynamics of various systems with classical or non-classical bound-ary conditions.The numerical simulations are conducted to study the pipe instability performance with respect to various boundary conditions,elastic support parameters,elastic foundation parameters and fluid mass ratios.The numerical model is validated by comparison with published data.It is found that the elastic support boundary conditions have significant effects on the stability of pipe resting on elas-tic foundation.The pipe stability performance is very sensitive to the two elastic foundation parameters.Larger fluid mass ratio enhances the pipe flutter stability performance but has no effects on the diver-gence.
文摘We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. Material properties of the FG plate are graded in the thickness direction and assumed to obey a power law distribution of the volume fraction of the constituents. To set up the global eigenvalue equation, the plate is divided into sub-domains or elements and the generalized differential quadrature procedure is applied to discretize the governing, boundary and compatibility equations. By assembling discrete equations at all nodal points, the weighting coefficient and force matrices are derived. To validate the accuracy of this method, the results are compared with those of the exact solution and the finite element method. At the end, the effects of different variables and local elastic support arrangements on the buckling load factor are investigated.
基金Supported by the Hi-Tech Research and Development Program of China (No. 2009AAJ130)
文摘Non-collaborative radio transmitter recognition is a significant but challenging issue, since it is hard or costly to obtain labeled training data samples. In order to make effective use of the unlabeled samples which can be obtained much easier, a novel semi-supervised classification method named Elastic Sparsity Regularized Support Vector Machine (ESRSVM) is proposed for radio transmitter classification. ESRSVM first constructs an elastic-net graph over data samples to capture the robust and natural discriminating information and then incorporate the information into the manifold learning framework by an elastic sparsity regularization term. Experimental results on 10 GMSK modulated Automatic Identification System radios and 15 FM walkie-talkie radios show that ESRSVM achieves obviously better performance than KNN and SVM, which use only labeled samples for classification, and also outperforms semi-supervised classifier LapSVM based on manifold regularization.
基金supported by the Portuguese Foundation for Science and Tech-nology(FCT),under the project POCI 2010 and the PhD grant SFRH/BD/44696/2008
文摘Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length.Based on Rayleigh’s quotient,an iterative strategy is developed to find the approximated torsional stiffness coefficients,which allows the reconciliation between the theoretical model results and the experimental ones,obtained through impact tests.The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh’s quotient but also on the mode shapes,considering the shape functions defined in branches.Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.