期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation of long-wavelength elastic wave propagation through wet bentonite-filled rock joints
1
作者 Ji-Won Kim Song-Hun Chong +1 位作者 Jin-Seop Kim Geon-Young Kim 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2496-2507,共12页
The saturation of the compacted bentonite buffer in the deep geological repository can cause bentonite swelling,intrusion into rock fractures,and erosion.Inevitably,erosion and subsequent bentonite mass loss due to gr... The saturation of the compacted bentonite buffer in the deep geological repository can cause bentonite swelling,intrusion into rock fractures,and erosion.Inevitably,erosion and subsequent bentonite mass loss due to groundwater inflow can aggravate the overall integrity of the engineered barrier system.Therefore,the coupled hydro-mechanical interaction between the buffer and rock during groundwater inflow and bentonite intrusion should be evaluated to guarantee the long-term safety of deep geological disposal.This study investigated the effect of bentonite erosion and intrusion on the elastic wave propagation characteristics in jointed rocks using a quasi-static resonant column test.Jointed rock specimens with different joint conditions(i.e.joint surface saturation and bentonite filling)were prepared using granite rock discs sampled from the Korea Underground Research Tunnel(KURT)and Gyeongju bentonite.The long-wavelength longitudinal and shear wave velocities were measured under different normal stress levels.A Hertzian-type power model was used to fit the wave velocities,and the relationship between the two fitted parameters provided the trend of joint conditions.Numerical simulations using three-dimensional distinct element code(3DEC)were conducted to better understand how the long-wavelength wave propagates through wet bentonite-filled rock joints. 展开更多
关键词 Engineered barrier system Bentonite erosion and intrusion Jointed rock mass Long-wavelength elastic wave velocity Quasi-static resonant column test Three-dimensional distinct element code(3DEC)
下载PDF
Detection of Frost-Resistance Property of Large-Size Concrete Based on Impact-Echo Method
2
作者 Qi Feng Zhengyue Ren Dan Wang 《Structural Durability & Health Monitoring》 EI 2023年第1期71-88,共18页
The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resona... The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resonance method was used to detect the Ed,resulting in a limitation for field tests.The impact-echo method can make up defects of traditional detection methods for frost-resistance testing,such as the evaluation via the loss of mass or strength.The feasibility of the impact-echo method to obtain the relative Ed is explored to detect the frost-resistance property of large-volume hydraulic concretes on site.Results show that the impact-echo method can replace the traditional resonance frequency method to evaluate the frost resistance of concrete,and has advantages of high accuracy,easy to operate,and not affecting by the aggregate size and size effect of samples.The dynamic elastic modulus of concrete detected by the impact-echo method has little difference with that obtained by the traditional resonance method.The one-dimensional elastic wave velocity of concrete has a good linear correlation with the transverse resonance frequency.The freeze-thaw damage occurred from the surface to the inner layer,and the surface is expected to be the most vulnerable part for the freeze-thaw damage.It is expected to monitor and track the degradation of the frost resistance of an actual structure by frequently detecting the P-wave velocity on site,which avoids coring again. 展开更多
关键词 Impact-echo method frost-resistance property dynamic elastic modulus ED elastic wave velocity transverse resonance frequency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部