期刊文献+
共找到6,861篇文章
< 1 2 250 >
每页显示 20 50 100
A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics 被引量:10
1
作者 JI Shunying SHEN Hung Tao +2 位作者 WANG Zhilian SHEN H Hayley YUE Qianjin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第4期54-65,共12页
A new viscoelastic-plastic (VEP) constitutive model for sea ice dynamics was developed based on continuum mechanics. This model consists of four components: Kelvin-Vogit viscoelastic model, Mohr-Coulomb yielding cr... A new viscoelastic-plastic (VEP) constitutive model for sea ice dynamics was developed based on continuum mechanics. This model consists of four components: Kelvin-Vogit viscoelastic model, Mohr-Coulomb yielding criterion, associated normality flow rule for plastic rehololgy, and hydrostatic pressure. The numerical simulations for ice motion in an idealized rectangular basin were made using smoothed particle hydrodynamics (SPH) method, and compared with the analytical solution as well as those based on the modified viscous plastic(VP) model and static ice jam theory. These simulations show that the new VEP model can simulate ice dynamics accurately. The new constitutive model was further applied to simulate ice dynamics of the Bohai Sea and compared with the traditional VP, and modified VP models. The results of the VEP model are compared better with the satellite remote images, and the simulated ice conditions in the JZ20-2 oil platform area were more reasonable. 展开更多
关键词 sea ice dynamics constitutive model viscous plasticity viscoelastic-plastic model Molar-Coulomb criterion
下载PDF
Time-domain dynamic constitutive model suitable for mucky soil site seismic response 被引量:1
2
作者 Dong Qing Chen Su +2 位作者 Jin Liguo Zhou Zhenghua Li Xiaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期1-13,共13页
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu... Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident. 展开更多
关键词 seismic response time-domain dynamic constitutive model logarithmic dynamic skeleton dampening effect mucky soil
下载PDF
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
3
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models Interface constitutive model Semi-analytical solution model tests
下载PDF
Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
4
作者 Longteng Liang Zhouquan Feng +2 位作者 Hongyi Zhang Zhengqing Chen Changzhao Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2403-2419,共17页
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot... Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs. 展开更多
关键词 Eddy current damper constitutive model finite element analysis vibration control power law constitutive model
下载PDF
A macro-mesoscopic constitutive model for porous and cracked rock under true triaxial conditions
5
作者 Li Qian Zuguo Mo +4 位作者 Jianhai Zhang Xianglin Xing Ru Zhang Tianzhi Yao Yunpeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3080-3098,共19页
The complex mechanical and damage mechanisms of rocks are intricately tied to their diverse mineral compositions and the formation of pores and cracks under external loads.Numerous rock tests reveal a complex interpla... The complex mechanical and damage mechanisms of rocks are intricately tied to their diverse mineral compositions and the formation of pores and cracks under external loads.Numerous rock tests reveal a complex interplay between the closure of porous defects and the propagation of induced cracks,presenting challenges in accurately representing their mechanical properties,especially under true triaxial stress conditions.This paper proposes a conceptualization of rock at the mesoscopic level as a two-phase composite,consisting of a bonded medium matrix and frictional medium inclusions.The bonded medium is characterized as a mesoscopic elastic material,encompassing various minerals surrounding porous defects.Its mechanical properties are determined using the mixed multi-inclusion method.Transformation of the bonded medium into the frictional medium occurs through crack extension,with its elastoplastic properties defined by the DruckerePrager yield criterion,accounting for hardening,softening,and extension.MorieTanaka and Eshelby’s equivalent inclusion methods are applied to the bonded and frictional media,respectively.The macroscopic mechanical properties of the rock are derived from these mesoscopic media.Consequently,a True Triaxial Macro-Mesoscopic(TTMM)constitutive model is developed.This model effectively captures the competitive effect and accurately describes the stress-deformation characteristics of granite.Utilizing the TTMM model,the strains resulting from porous defect closure and induced crack extension are differentiated,enabling quantitative determination of the associated damage evolution. 展开更多
关键词 MICROMECHANICS Macroemesoscopic HOMOGENIZATION constitutive model Competitive effect
下载PDF
Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure
6
作者 Yun Shu Zheming Zhu +4 位作者 Meng Wang Weiting Gao Fei Wang Duanying Wan Yuntao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1153-1174,共22页
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas... The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models. 展开更多
关键词 Damage constitutive model Parameter calibration Rock modeling SANDSTONE Dynamic impact load Tensile-shear interactive damage(TSID)model
下载PDF
A whole process damage constitutive model for layered sandstone under uniaxial compression based on Logistic function
7
作者 LIU Dong-qiao GUO Yun-peng +1 位作者 LING Kai LI Jie-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2411-2430,共20页
Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0... Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering. 展开更多
关键词 layered sandstone uniaxial compression damage evolution Logistic function constitutive model
下载PDF
An improved strain-softening constitutive model of granite considering the effect of crack deformation
8
作者 Yapeng Li Qiang Zhang +2 位作者 Qiuxin Gu Peinan Wu Binsong Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1202-1215,共14页
This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total str... This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite. 展开更多
关键词 STRAIN-SOFTENING Crack deformation effect Plastic shear strain constitutive model
下载PDF
Fatigue properties and damage constitutive model of salt rock based on CT scanning
9
作者 Junbao Wang Xiao Liu +3 位作者 Qiang Zhang Xinrong Liu Zhanping Song Shijin Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期245-259,共15页
To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,an... To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,and the mesoscopic pore structures of salt rock before and after fatigue tests and under different cycle numbers were measured using CT scanning instrument.Based on the test results,the effects of the cycle number and the upper-limit stress on the evolution of cracks,pore morphology,pore number,pore volume,pore size,plane porosity,and volume porosity of salt rock were analyzed.The failure path of salt rock specimens under cyclic loading was analyzed using the distribution law of plane porosity.The damage variable of salt rock under cyclic loading was defined on basis of the variation of volume porosity with cycle number.In order to describe the fatigue deformation behavior of salt rock under cyclic loading,the nonlinear Burgers damage constitutive model was further established.The results show that the model established can better reflect the whole development process of fatigue deformation of salt rock under cyclic loading. 展开更多
关键词 Salt rock Cyclic loading CT scanning Mesoscopic pore evolution constitutive model
下载PDF
Nonlinear constitutive models of rock structural plane and their applications
10
作者 Wenlin Feng Shuangjian Niu +1 位作者 Chunsheng Qiao Dujian Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期790-806,共17页
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ... Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering. 展开更多
关键词 Structural plane Engineering stability ROUGHNESS Normal stress Elasto-plastic constitutive model Discrete element method
下载PDF
A thermodynamics-based three-scale constitutive model for partially saturated granular materials
11
作者 Jianqiu Tian Enlong Liu Yuancheng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1813-1831,共19页
A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a... A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings. 展开更多
关键词 Unsaturated granular material Unsaturated porous material GEOMATERIALS Multi-scale constitutive model Water retention curve PLASTICITY
下载PDF
Damage constitutive model of lunar soil simulant geopolymer under impact loading
12
作者 Hanyan Wang Qinyong Ma Qianyun Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1059-1071,共13页
Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properti... Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed. 展开更多
关键词 Lunar soil simulant geopolymer(LSSG) Split hopkinson pressure bar(SHPB)test constitutive model Energy analysis Failure mode
下载PDF
Constitutive Model for Rubberlike Materials
13
作者 Fuzhang Zhao 《Advances in Pure Mathematics》 2024年第8期633-649,共17页
The isotropic continuum stored energy (CSE) functional, fully combined with the Poisson function, has been applied to constitutively model compressible as well as incompressible rubberlike materials. The isotropic CSE... The isotropic continuum stored energy (CSE) functional, fully combined with the Poisson function, has been applied to constitutively model compressible as well as incompressible rubberlike materials. The isotropic CSE constitutive model fits uniaxial tension test and predicts unfitted pure shear and equibiaxial tension tests of incompressible S4035A thermoplastic elastomer (TPE). Furthermore, the isotropic CSE model along with the Poisson function fits uniaxial tension test along with the kinematic relation test and predicts unfitted pure shear and equibiaxial tension tests along with the corresponding kinematic relation tests of a compressible synthetic rubber. The detailed procedures for uniquely identifying constitutive parameters are emphasized, the experimental characterization results are discussed, and the principles for constitutive models are summarized and augmented. 展开更多
关键词 Compressible Finite Elasticity constitutive modeling Isotropic CSE Functional Poisson Function Rubberlike Materials
下载PDF
DRUCKER-PRAGER YIELD CRITERIA IN VISCOELASTIC-PLASTIC CONSTITUTIVE MODEL FOR THE STUDY OF SEA ICE DYNAMICS 被引量:3
14
作者 WANG Gang JI Shun-ying LV He-xiang YUE Qian-jin 《Journal of Hydrodynamics》 SCIE EI CSCD 2006年第6期714-722,共9页
Based on the characteristics of sea ice drifting and ridging at meso-small scale, the Drucker-Prager (D-P) yield criteria was introduced into the Viscoelastic-Plastic (VEP) constitutive model for the study of sea ... Based on the characteristics of sea ice drifting and ridging at meso-small scale, the Drucker-Prager (D-P) yield criteria was introduced into the Viscoelastic-Plastic (VEP) constitutive model for the study of sea ice dynamics. In this model, the Kelvin-Vogit viscoelastic model was adopted in the elastic stage, and the associated normal flow rule was used in the plastic stage. Using the VEP model, the sea ice ridging process was simulated in an idealized rectangular basin, and the simulation results show that the simulated ice ridge thickness is consistent with the analytical solution. Moreover, the VEP model with the D-P yield criteria was also applied for the sea ice simulation of Bohai Sea, and the ice thickness, concentration, velocity, and ice stress were obtained in 48 h. The simulated thickness distributions agree well with the satellite images. The singular problem in the Mohr^7oulomb (M-C) yield criteria was overcome by the D-P yield criteria, and the computational efficiency was also improved. In the numerical simulations described above, the smoothed particle hydrodynamics was applied. 展开更多
关键词 sea ice dynamics constitutive model viscoelastic-plastic Drucker-Prager (D-P) yield criteria Mohr^oulomb (M-C) yield criteria
原文传递
Constitutive modelling of fabric effect on sand liquefaction 被引量:2
15
作者 Zhiwei Gao Dechun Lu +1 位作者 Yue Hou Xin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期926-936,共11页
Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fa... Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fabric anisotropy related to the internal soil structure such as particle orientation,force network and void space is found to have profound influence on sand liquefaction.A constitutive model accounting for the effect of anisotropy on sand liquefaction is proposed.Evolution of fabric anisotropy during loading is considered according to the anisotropic critical state theory for sand.The model has been validated by extensive test results on Toyoura sand with different initial densities and stress states.The effect of sample preparation method on sand liquefaction is qualitatively analysed.The model has been used to investigate the response of a sand ground under earthquake loading.It is shown that sand with horizontal bedding plane has the highest resistance to liquefaction when the sand deposit is anisotropic,which is consistent with the centrifuge test results.The initial degree of fabric anisotropy has a more significant influence on the liquefaction resistance.Sand with more anisotropic fabric that can be caused by previous loading history or compaction methods has lower liquefaction resistance. 展开更多
关键词 SAND ANISOTROPY LIQUEFACTION Finite element modelling constitutive model
下载PDF
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:2
16
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy Hot deformation Microstructure evolution constitutive model Finite element simulation
下载PDF
Constitutive model for Ya'an mudstone based on mesoscopic breakage mechanism 被引量:1
17
作者 HE Yun-yong CHEN Cong +5 位作者 WANG Fu-ming GUO Cheng-chao XIANG Bo YU Di LIU En-long DING Chun 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1159-1169,共11页
The slope stability of Ya’an expressway in Sichuan dominated by mudstone strata,is influenced greatly by both the mechanical properties and stressstrain relationship of mudstone.In this paper,the mechanical propertie... The slope stability of Ya’an expressway in Sichuan dominated by mudstone strata,is influenced greatly by both the mechanical properties and stressstrain relationship of mudstone.In this paper,the mechanical properties of the Ya’an mudstone samples under triaxial compression conditions were studied,based on an established constitutive model under the framework of breakage mechanics to simulate the mechanical properties of mudstone.Firstly,triaxial compression tests and SEM tests at the confining pressures of 0.5 MPa,1.0 MPa,and 2.0 MPa were carried out on the mudstone samples,and it was found that the mudstone sample undergoes strain softening and dilatancy followed by the volumetric compaction.Then,based on analysis on the breakage mechanism of the above test results,we idealized the mudstone sample as a binary medium material consisting of the bonded elements and frictional elements,of which the bonded elements are composed of solid matrix and pores,and the frictional elements are composed of broken aggregates.During the loading process,the cementation between clay minerals and non-clay minerals in the mudstone sample is first destroyed,leading to the formation of micro-cracks within the particle aggregate,that is,the bonded elements are gradually damaged during the loading process and gradually turned into the frictional elements,and the two jointly bear the external load.The bonded elements are composed of mudstone matrix and pores,which have the cementitious characteristics of mudstone,and the frictional elements are composed of the broken aggregate with the frictional characteristics of the broken particles.Based on the homogenization theory,the constitutive model for the mudstone is established,and the determining method for model parameters is also given.Finally,the results of the triaxial compression tests of the mudstone samples are predicted by the constitutive model proposed here,which can reflect the main mechanical properties of the mudstone samples. 展开更多
关键词 MUDSTONE Breakage mechanism constitutive model Strain softening Binary medium model
下载PDF
A rate-dependent constitutive model for saturated frozen soil considering local breakage mechanism 被引量:1
18
作者 Pan Wang Enlong Liu +1 位作者 Bin Zhi Bingtang Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2458-2474,共17页
A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distributio... A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distribution of the non-uniform strain rate of saturated frozen soil at the meso-scale due to the local icecementation breakage is described by a newly binary-medium-based homogenization equation.Based on the field-equation-based approach of the meso-mechanics theory,the interaction expression of the strain rate at macro-and meso-scale is derived,which can give the strain rate concentration tensor at different crushed degrees.With the thermodynamics and empirical assumption,a breakage ratio in the rate-dependent form is determined.This overcomes the limitations of the existing binary-medium-based models that are difficult to simulate rate-dependent mechanical response.Based on these assumptions,a newly binary-medium-based rate-dependent model is proposed considering both the ice bond breakage and material composition characteristics of saturated frozen soil.The proposed constitutive model has been validated by the test results on frozen soils with different temperatures and strain rates. 展开更多
关键词 Binary-medium-based model Rate-dependency Frozen soil Grain debonding effect Multi-scale constitutive model
下载PDF
Mechanical properties and damage constitutive model of sandstone after acid corrosion and high temperature treatments 被引量:1
19
作者 Qijian Chen Youliang Chen +3 位作者 Peng Xiao Xi Du Yungui Pan Rafig Azzam 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期747-760,共14页
Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosi... Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosion treated samples were then subjected to high-temperature experiments at 25,300,600,and 900℃,and triaxial compression experiments were conducted in the laboratory.The experimental results show that the superposition of chemical damage and thermal damage has a significant impact on the quality,wave velocity,porosity and compression failure characteristics of the rock.Based on the Lemaitre strain equivalent hypothesis theory,the damage degree of rock material was described by introducing damage variables,and the spatial mobilized plane(SMP)criterion was adopted.The damage constitutive model can well reflect the stress-strain characteristics of the rock triaxial compression process,which verified the rationality and reliability of the model parameters.The experiment and constitutive model analyzed the change law of mechanical properties of rock after chemical corrosion and high temperature thermal damage,which had certain practical significance for rock engineering construction. 展开更多
关键词 Acid corrosion High temperature Mechanical properties Damage variable SMP criterion constitutive model
下载PDF
Perforation studies of concrete panel under high velocity projectile impact based on an improved dynamic constitutive model
20
作者 Fei Zhou Hao Wu Yuehua Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期64-82,共19页
The finite-depth concrete panels have been widely applied in the protective structures,and its impact resistance and dynamic fracture failures,especially the scabbing/perforation limits,under high velocity projectile ... The finite-depth concrete panels have been widely applied in the protective structures,and its impact resistance and dynamic fracture failures,especially the scabbing/perforation limits,under high velocity projectile impact,are mainly concerned by protective engineers,which are numerically studied based on an improved dynamic concrete model in this study.Firstly,based on the framework of the KCC(Karagozian&Case concrete)model,a dynamic concrete model is proposed which considers an independent tensile damage model and a continued transition between dynamic tensile and compressive properties.Secondly,the strength surface,equation of state and damage parameters of the proposed model are comprehensively calibrated by a triaxial compressive test with high confinement pressure,the rationality of which is further verified based on the single element tests,e.g.,uniaxial and triaxial compression as well as uniaxial,biaxial and triaxial tension.Thirdly,a series of projectile high velocity impact tests on thin and thick concrete panels are simulated,which indicates that the projectile residual velocity and dynamic fracture failures are reproduced satisfactorily,while the KCC model underestimates both the spalling and scabbing dimensions severely.Finally,based on the validated concrete model and finite element analyses approach,the validations of the existing five empirical formulae are evaluated,in terms of the depth of penetration(DOP)and scabbing/perforation limits of concrete panel.Both the Army corps of engineers(ACE)and modified National Defense Research Committee(NDRC)formulae are recommended in the design of the protective structure to avoid scabbing failure. 展开更多
关键词 Concrete panel PROJECTILE Dynamic fracture Scabbing limit constitutive model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部