To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data...To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data fitting.The dimensionless analysis was applied to deriving two preliminary nondimensional relationships of the material properties,and finite element modeling and data fitting were carried out to establish their explicit forms.Numerical indentation tests were carried out to examine the effectiveness of the proposed model and the good agreement shows that the proposed theory model can be applied in practice.展开更多
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforce...To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.展开更多
Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doo...Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.展开更多
Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent...Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent years.How to use the finite element method to research bushing was introduced in the article.Physics fields and many relevant parameters of one real bushing were calculated.Through the results of calculation,it indicate that the finite element method is very useful in bushing research of designing and optimizing.展开更多
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seis...Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seismic loads,besides conventional analysis,elastic-plastic time history analysis under rare seismic intensity is carried out.An ideal finite element(FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes.Furthermore,according to elastic-plastic time history analysis theory,deformation,stress and damage pattern of the structure under rare seismic intensity are investigated.Based on the above analysis,the established reliability model according to the reliability theory,together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis.The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity,and the structure needs to be reinforced.展开更多
A elastic-plastic fatigue crack growth(FCG)finite element model was developed for predicting crack growth rate under cyclic load.The propagation criterion for this model was established based on plastically dissipated...A elastic-plastic fatigue crack growth(FCG)finite element model was developed for predicting crack growth rate under cyclic load.The propagation criterion for this model was established based on plastically dissipated energy.The crack growth simulation under cyclic computation was implemented through the ABAQUS scripting interface.The predictions of this model are in good agreement with the results of crack propagation experiment of compact tension specimen made of 304 stainless steel.Based on the proposed model,the single peak overload retardation effect of elastic-plastic fatigue crack was analyzed.The results shows that the single peak overload will reduce the accumulation rate of plastic energy dissipation of elements at crack tip plastic zone,so that crack growth will be arrested.The crack growth rate will not recover until the crack tip exceed the affected region.Meanwhile,the crack growth rate is mainly determined by the amplitude rather than the mean load under the condition of small scale yielding.The proposed model would be helpful for predicting the growth rate of mode I elastic-plastic fatigue crack.展开更多
The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying...The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.展开更多
<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important app...<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>展开更多
In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibra...In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibration curves of elements Mn, Ti, V, and Cr in pig iron were 0.9965,0.9983, 0.9963, and 0.991, respectively, and their root mean square errors of cross-validation were 0.0501, 0.0054, 0.0205, and 0.0245 wt%, respectively. Six test samples were used for the validation of the performance of the calibration curves established by the portable LIBS. The average relative errors of elements Mn, Ti, V, and Cr were 2.5%, 11.7%, 13.0%, and 5.6%,respectively. These results were comparable with most results reported in traditional LIBS in steel or other matrices. However, the portable LIBS is flexible, compact, and robust, providing a promising prospect in industrial application.展开更多
By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In...By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably.展开更多
Fiber-metal laminates (FMLs) possess huge potential in mass-reduction strategy of automotive industry. In order to understand behavior of FMLs as they undergo stamp forming processes, finite element analyses of surfac...Fiber-metal laminates (FMLs) possess huge potential in mass-reduction strategy of automotive industry. In order to understand behavior of FMLs as they undergo stamp forming processes, finite element analyses of surface strain evolutions have been carried out. The simulations provide strains at locations within the layers of an FML, allowing better understanding of forming behavior of the composite layer and its influence on the metal layers. Finite element analyses were conducted on two aluminum-based FMLs with different fiber-reinforced composites and benchmarked against monolithic aluminum alloy. The simulation results indicated that high stiffness of the reinforcement constrains flow of the matrix in the composite layer, which can be attributed to the distinguishing behavior of the FMLs compared to the monolithic aluminum alloy.展开更多
This paper investigated stamp forming performance of two aluminum-based Fiber-metal laminates (FMLs) with different fiber-reinforced composites using finite element analysis. Given the inherent thermal-dependent prope...This paper investigated stamp forming performance of two aluminum-based Fiber-metal laminates (FMLs) with different fiber-reinforced composites using finite element analysis. Given the inherent thermal-dependent properties of fiber-reinforced polypropylene, the effect of elevated temperature on its forming behavior is worthy of concern. Furthermore, the elevation in temperature also influences the bonding within the constituent lamina. Both factors were integrated in the modelling. By investigating the through-thickness strain evolution throughout the stamping process, the forming mode of each layer, as well as their interactions, were better understood. Results suggested that the flow of matrix and the rotation at the intersections of fiber strands can be promoted at elevated temperature, which transforms the forming performance of FMLs close to that of monolithic aluminum. These results propose means to improve the forming performance of FMLs.展开更多
Hollow-core negative curvature fibers(HC-NCFs)have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions.In this work,a new kind...Hollow-core negative curvature fibers(HC-NCFs)have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions.In this work,a new kind of single-polarization single-mode HC-NCF with nested U-type cladding elements is proposed.To achieve the single-polarization single-mode transmission,we use two different silica tubes in thickness,which satisfy the resonance and anti-resonance conditions on the U-type cladding elements and the cladding tubes,respectively.Besides,the elliptical elements are introduced to achieve good single-mode performance.By studying the influences of the structure parameters on the propagation characteristics,the optimized structure parameters are obtained.The simulation results show that when the wavelength is fixed at 1550 nm,the single-polarization single-mode transmission is achieved,with the polarization extinction ratio of 25749 and minimum high-order mode extinction ratio of 174.Furthermore,the confinement loss is only 0.0015 dB/m.展开更多
The rotatory optics element in the tensor dielectric coefficient matrix is an important para-(meter) for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-(surement) of rotatory...The rotatory optics element in the tensor dielectric coefficient matrix is an important para-(meter) for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-(surement) of rotatory optics element is difficult for the rotatory optical fiber. A simple principle and method for measuring rotatory optics element are put forward in this paper. Firstly by using electromagnetic theory it was demonstrated that the rotatory optics element has a simple linear relation with the rotatory angle, and then the rotatory optics element has a simple linear relation with the magnetic field strength (or bias current in the helix coil) . Secondly a measurement system for the rotatory optics element in the rotatory optical fiber was designed. Using the measurement system the rotatory element can be obtained by measuring the bias current simply.展开更多
Usage of fiber reinforced concrete to replace shear reinforcement has become more common in the precast industry in recent years. In some cases, the use of steel fibers could be problematic because of corrosion, hence...Usage of fiber reinforced concrete to replace shear reinforcement has become more common in the precast industry in recent years. In some cases, the use of steel fibers could be problematic because of corrosion, hence, synthetic material could be a suitable alternative material solution. Thus, it would appear logical to undertake a comparison of these fibers' load bearing capacity to determine suitability in each case. In this paper, the bending and the shear tests of four large-scale and prestressed beams made of steel or synthetic fiber reinforced concrete without stirrups are presented. The post-cracking residual tensile strength diagram of the fibers, according to RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures) TC162, is given and the experimental behavior of the fiber solutions is compared. The modified fracture energy method is used to define an advanced material model for the fiber reinforced concrete in the finite element analysis. The numerical calculations and the test results are compared in terms of crack propagation and the loading-deflect'ion process. As a consequence, both steel and synthetic fibers seem to be good alternatives to replace the stirrups. However, the behavior of each fiber is not the same. The numerical calculation provided a good approximation for the real scale tests.展开更多
The boundary dement method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considerin...The boundary dement method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considering the matrices of the tractions and displacements for each group of the identical inclusion were the same, an effective computational scheme was designed, since the orders of the resulting matrix equations can be greatly reduced. Numerical examples indicate that this boundary element method scheme is more effective than the conventional multi-domain boundary element method for such a problem. The present scheme can be used to investigate the effective mechanical properties of the fiber-reinforced composites.展开更多
For the path dependency and nonlinearity introduced by incremental construction, numerical method has been widely used in deformation analysis of geo engineering.In the numerical simulation scheme commonly used in the...For the path dependency and nonlinearity introduced by incremental construction, numerical method has been widely used in deformation analysis of geo engineering.In the numerical simulation scheme commonly used in the past, the excavating loads are extracted from nodal stresses, which are deduced linearly from the stresses at Gauss point in finite element method.The unneglectable calculation error is contained in this process when elastic plastic constitutive model is employed.The error mentioned above is analyzed in detail.Based on the analysis of excavation process and the principle of finite element theory, a new simulation scheme for excavation is proposed.At the end of this paper, an application in rock engineering is given out.展开更多
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el...The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.展开更多
基金Projects(50531060,10525211,10828205)supported by the National Natural Science Foundation of ChinaProject(10525211)supported by National Science Found for Distinguished Young Scholars of ChinaProject(076044)supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘To characterize the elastic-plastic properties of thin film materials on elastic-plastic substrates,a simple theory model was proposed,which included three steps:dimensionless analysis,finite element modeling and data fitting.The dimensionless analysis was applied to deriving two preliminary nondimensional relationships of the material properties,and finite element modeling and data fitting were carried out to establish their explicit forms.Numerical indentation tests were carried out to examine the effectiveness of the proposed model and the good agreement shows that the proposed theory model can be applied in practice.
基金the National Natural Science Foundation of China under Grant Nos.51278218 and 51078166
文摘To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.
文摘Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.
基金National Science Foundation of China Yunnan United Foundation.(U0837601)the Natural Science Foundation of Yunnan Province,China(2010CF126)
文摘Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent years.How to use the finite element method to research bushing was introduced in the article.Physics fields and many relevant parameters of one real bushing were calculated.Through the results of calculation,it indicate that the finite element method is very useful in bushing research of designing and optimizing.
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
基金supported by National High Technology Research and Development Program 863 Plan (No. 2009AA043000)
文摘Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seismic loads,besides conventional analysis,elastic-plastic time history analysis under rare seismic intensity is carried out.An ideal finite element(FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes.Furthermore,according to elastic-plastic time history analysis theory,deformation,stress and damage pattern of the structure under rare seismic intensity are investigated.Based on the above analysis,the established reliability model according to the reliability theory,together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis.The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity,and the structure needs to be reinforced.
基金Project No.51575076 supported by the National Natural Science Foundation of China.
文摘A elastic-plastic fatigue crack growth(FCG)finite element model was developed for predicting crack growth rate under cyclic load.The propagation criterion for this model was established based on plastically dissipated energy.The crack growth simulation under cyclic computation was implemented through the ABAQUS scripting interface.The predictions of this model are in good agreement with the results of crack propagation experiment of compact tension specimen made of 304 stainless steel.Based on the proposed model,the single peak overload retardation effect of elastic-plastic fatigue crack was analyzed.The results shows that the single peak overload will reduce the accumulation rate of plastic energy dissipation of elements at crack tip plastic zone,so that crack growth will be arrested.The crack growth rate will not recover until the crack tip exceed the affected region.Meanwhile,the crack growth rate is mainly determined by the amplitude rather than the mean load under the condition of small scale yielding.The proposed model would be helpful for predicting the growth rate of mode I elastic-plastic fatigue crack.
基金Science Research Foundation of Shanghai Municipal Education Commission (No.06VZ004)
文摘The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.
文摘<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>
基金supported by National Natural Science Foundation of China (Grant Nos. 61705064 & 11647122)the Natural Science Foundation of Hubei Province (Grant Nos. 2018CFB773 & 2018CFB672)the Project of the Hubei Provincial Department of Education (Grant No. T201617)
文摘In this paper, we developed a portable laser-induced breakdown spectroscopy(LIBS) using an optical fiber to deliver laser energy and used it to quantitatively analyze minor elements in steel.The R^2 factors of calibration curves of elements Mn, Ti, V, and Cr in pig iron were 0.9965,0.9983, 0.9963, and 0.991, respectively, and their root mean square errors of cross-validation were 0.0501, 0.0054, 0.0205, and 0.0245 wt%, respectively. Six test samples were used for the validation of the performance of the calibration curves established by the portable LIBS. The average relative errors of elements Mn, Ti, V, and Cr were 2.5%, 11.7%, 13.0%, and 5.6%,respectively. These results were comparable with most results reported in traditional LIBS in steel or other matrices. However, the portable LIBS is flexible, compact, and robust, providing a promising prospect in industrial application.
基金the Science Foundation for Young Scientists of Hubei Province Educational Committee of China (B200514003)
文摘By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably.
文摘Fiber-metal laminates (FMLs) possess huge potential in mass-reduction strategy of automotive industry. In order to understand behavior of FMLs as they undergo stamp forming processes, finite element analyses of surface strain evolutions have been carried out. The simulations provide strains at locations within the layers of an FML, allowing better understanding of forming behavior of the composite layer and its influence on the metal layers. Finite element analyses were conducted on two aluminum-based FMLs with different fiber-reinforced composites and benchmarked against monolithic aluminum alloy. The simulation results indicated that high stiffness of the reinforcement constrains flow of the matrix in the composite layer, which can be attributed to the distinguishing behavior of the FMLs compared to the monolithic aluminum alloy.
文摘This paper investigated stamp forming performance of two aluminum-based Fiber-metal laminates (FMLs) with different fiber-reinforced composites using finite element analysis. Given the inherent thermal-dependent properties of fiber-reinforced polypropylene, the effect of elevated temperature on its forming behavior is worthy of concern. Furthermore, the elevation in temperature also influences the bonding within the constituent lamina. Both factors were integrated in the modelling. By investigating the through-thickness strain evolution throughout the stamping process, the forming mode of each layer, as well as their interactions, were better understood. Results suggested that the flow of matrix and the rotation at the intersections of fiber strands can be promoted at elevated temperature, which transforms the forming performance of FMLs close to that of monolithic aluminum. These results propose means to improve the forming performance of FMLs.
基金supported by the National Natural Science Foundation of China(Grant No.61935007)。
文摘Hollow-core negative curvature fibers(HC-NCFs)have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions.In this work,a new kind of single-polarization single-mode HC-NCF with nested U-type cladding elements is proposed.To achieve the single-polarization single-mode transmission,we use two different silica tubes in thickness,which satisfy the resonance and anti-resonance conditions on the U-type cladding elements and the cladding tubes,respectively.Besides,the elliptical elements are introduced to achieve good single-mode performance.By studying the influences of the structure parameters on the propagation characteristics,the optimized structure parameters are obtained.The simulation results show that when the wavelength is fixed at 1550 nm,the single-polarization single-mode transmission is achieved,with the polarization extinction ratio of 25749 and minimum high-order mode extinction ratio of 174.Furthermore,the confinement loss is only 0.0015 dB/m.
文摘The rotatory optics element in the tensor dielectric coefficient matrix is an important para-(meter) for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-(surement) of rotatory optics element is difficult for the rotatory optical fiber. A simple principle and method for measuring rotatory optics element are put forward in this paper. Firstly by using electromagnetic theory it was demonstrated that the rotatory optics element has a simple linear relation with the rotatory angle, and then the rotatory optics element has a simple linear relation with the magnetic field strength (or bias current in the helix coil) . Secondly a measurement system for the rotatory optics element in the rotatory optical fiber was designed. Using the measurement system the rotatory element can be obtained by measuring the bias current simply.
文摘Usage of fiber reinforced concrete to replace shear reinforcement has become more common in the precast industry in recent years. In some cases, the use of steel fibers could be problematic because of corrosion, hence, synthetic material could be a suitable alternative material solution. Thus, it would appear logical to undertake a comparison of these fibers' load bearing capacity to determine suitability in each case. In this paper, the bending and the shear tests of four large-scale and prestressed beams made of steel or synthetic fiber reinforced concrete without stirrups are presented. The post-cracking residual tensile strength diagram of the fibers, according to RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures) TC162, is given and the experimental behavior of the fiber solutions is compared. The modified fracture energy method is used to define an advanced material model for the fiber reinforced concrete in the finite element analysis. The numerical calculations and the test results are compared in terms of crack propagation and the loading-deflect'ion process. As a consequence, both steel and synthetic fibers seem to be good alternatives to replace the stirrups. However, the behavior of each fiber is not the same. The numerical calculation provided a good approximation for the real scale tests.
文摘The boundary dement method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considering the matrices of the tractions and displacements for each group of the identical inclusion were the same, an effective computational scheme was designed, since the orders of the resulting matrix equations can be greatly reduced. Numerical examples indicate that this boundary element method scheme is more effective than the conventional multi-domain boundary element method for such a problem. The present scheme can be used to investigate the effective mechanical properties of the fiber-reinforced composites.
文摘For the path dependency and nonlinearity introduced by incremental construction, numerical method has been widely used in deformation analysis of geo engineering.In the numerical simulation scheme commonly used in the past, the excavating loads are extracted from nodal stresses, which are deduced linearly from the stresses at Gauss point in finite element method.The unneglectable calculation error is contained in this process when elastic plastic constitutive model is employed.The error mentioned above is analyzed in detail.Based on the analysis of excavation process and the principle of finite element theory, a new simulation scheme for excavation is proposed.At the end of this paper, an application in rock engineering is given out.
文摘The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.