期刊文献+
共找到7,780篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Simulation of the Seismic Response of a Horizontal Storage Tank Based on a SPH-FEM Coupling Method
1
作者 Peilei Yan Endong Guo +1 位作者 HouliWu Liangchao Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1655-1678,共24页
A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a... A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation. 展开更多
关键词 SPH-FEM coupling method horizontal storage tank seismic response SLOSHING
下载PDF
Time-domain dynamic constitutive model suitable for mucky soil site seismic response
2
作者 Dong Qing Chen Su +2 位作者 Jin Liguo Zhou Zhenghua Li Xiaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期1-13,共13页
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu... Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident. 展开更多
关键词 seismic response time-domain dynamic constitutive model logarithmic dynamic skeleton dampening effect mucky soil
下载PDF
Elastic-plastic seismic response of CRTS II slab ballastless track system on high-speed railway bridges 被引量:10
3
作者 YAN Bin LIU Shi +2 位作者 PU Hao DAI GongLian CAI XiaoPei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第6期865-871,共7页
China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than ... China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged. 展开更多
关键词 弹塑性地震反应 高速铁路桥梁 轨道系统 铁路轨道结构 非线性动态模型 地震作用 轨道板 承重构件
原文传递
Seismic response comparison and sensitivity analysis of pile foundation in liquefiable and non-liquefiable soils 被引量:3
4
作者 Jia Kemin Xu Chengshun +3 位作者 Du Xiuli Cui Chunyi Dou Pengfei Song Jia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期87-104,共18页
Case history investigations have shown that pile foundations are more critically damaged in liquefiable soils than non-liquefiable soils.This study examines the differences in seismic response of pile foundations in l... Case history investigations have shown that pile foundations are more critically damaged in liquefiable soils than non-liquefiable soils.This study examines the differences in seismic response of pile foundations in liquefiable and non-liquefiable soils and their sensitivity to numerical model parameters.A two-dimensional finite element(FE)model is developed to simulate the experiment of a single pile foundation centrifuge in liquefiable soil subjected to earthquake motions and is validated against real-world test results.The differences in soil-pile seismic response of liquefiable and non-liquefiable soils are explored.Specifically,the first-order second-moment method(FOSM)is used for sensitivity analysis of the seismic response.The results show significant differences in seismic response for a soil-pile system between liquefiable and non-liquefiable soil.The seismic responses are found to be significantly larger in liquefiable soil than in non-liquefiable soil.Moreover,the pile bending moment was mainly affected by the kinematic effect in liquefiable soil,while the inertial effect was more significant in non-liquefiable soil.The controlling parameters of seismic response were PGA,soil density,and friction angle in liquefiable soil,while the pile bending moment was mainly controlled by PGA,the friction angle of soil,and shear modulus of loose sand in non-liquefiable soil. 展开更多
关键词 liquefiable non-liquefiable finite element analysis pile foundation seismic response sensitivity analysis
下载PDF
Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling
5
作者 Muhammad Akbar Huali Pan +2 位作者 Jiangcheng Huang Bilal Ahmed Guoqiang Ou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2835-2863,共29页
The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement co... The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers. 展开更多
关键词 seismic analysis finite element modeling earth-retaining ER walls dynamic response structural resilience
下载PDF
Generalized response displacement methods for seismic analysis of underground structures with complex cross section
6
作者 Xu Zigang Ding Linling +2 位作者 Du Xiuli Xu Chengshun Zhuang Haiyang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期979-993,共15页
The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing ... The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections. 展开更多
关键词 underground structures seismic analysis response displacement method equivalent seismic load complex cross section
下载PDF
An extended multiple-support response spectrum method incorporating fluid-structure interaction for seismic analysis of deep-water bridges
7
作者 Wu Kun Li Ning Li Zhongxian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期211-223,共13页
The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo... The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges. 展开更多
关键词 response spectrum method seismic response of bridge ground motion spatial variability fluid-structure interaction rdiation wave theory
下载PDF
Ideal Drift Response Curve for Robust Optimal Damper Design for Elastic-Plastic MDOF Structures under Multi-Level Earthquakes Dedicated to Professor Karl S.Pister for his 95th birthday
8
作者 Hiroki Akehashi Izuru Takewaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1181-1207,共27页
A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various ... A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity. 展开更多
关键词 Optimal damper placement robust damper design multi-level earthquake ideal drift response curve elastic-plastic MDOF model viscous damper hysteretic damper
下载PDF
ANOMALOUS BEHAVIOR REVISITED:DYNAMIC RESPONSE OF ELASTIC-PLASTIC STRUCTURES 被引量:7
9
作者 Xi, F Yang, JL Li, ZL 《Acta Mechanica Solida Sinica》 SCIE EI 1998年第4期283-294,共12页
Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is... Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before. 展开更多
关键词 finite deformation minimum principle of acceleration dynamic elastic-plastic response bending moment distribution anomalous behavior
全文增补中
Seismic response analysis of road vehicle-bridge system for continuous rigid frame bridges with high piers 被引量:10
10
作者 Li Yongle Chen Ning +1 位作者 Zhao Kai Liao Haili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期593-602,共10页
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of se... The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the extemal excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration. 展开更多
关键词 vehicle-bridge system coupling vibration seismic effects SAFETY dynamic response
下载PDF
Seismic response of continuous span bridges through fiber-based finite element analysis 被引量:9
11
作者 Chiara Casarotti Rui Pinho 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期119-131,共13页
It is widely recognized that nonlinear time-history analysis constitutes the most accurate way to simulate the response of structures subjected to strong levels of seismic excitation. This analytical method is based o... It is widely recognized that nonlinear time-history analysis constitutes the most accurate way to simulate the response of structures subjected to strong levels of seismic excitation. This analytical method is based on sound underlying principles and has the capability to reproduce the intrinsic inelastic dynamic behavior of structures. Nonetheless, comparisons with experimental results from large-scale testing of structures are still needed, in order to ensure adequate levels of confidence in this numerical methodology. The fiber modelling approach employed in the current endeavor inherently accounts for geometric nonlinearities and material inelasticity, without a need for calibration of plastic hinges mechanisms, typical in concentrated plasticity models. The resulting combination of analysis accuracy and modelling simplicity, allows thus to overcome the perhaps not fully justifiable sense of complexity associated to nonlinear dynamic analysis. The fiber-based modelling approach is employed in the framework of a finite element program downloaded from the Intemet for seismic response analysis of framed structures. The reliability and accuracy of the program are demonstrated by numerically reproducing pseudo-dynamic tests on a four span continuous deck concrete bridge. Modelling assumptions are discussed, together with their implications on numerical results of the nonlinear time-history analyses, which were found to be in good agreement with experimental results. 展开更多
关键词 BRIDGES seismic response pseudo-dynamic testing nonlinear dynamic analysis fiber modelling
下载PDF
The plurality effect of topographical irregularities on site seismic response 被引量:5
12
作者 Saeed Ghaffarpour Jahromi Sama Karkhaneh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第3期521-534,共14页
Topography can have signifi cant eff ects on seismic ground response during an earthquake because topographic irregularities cause considerable diff erences between the seismic waves emitted by the source and the wave... Topography can have signifi cant eff ects on seismic ground response during an earthquake because topographic irregularities cause considerable diff erences between the seismic waves emitted by the source and the waves reaching the ground surface. When a seismic motion happens in a topographically irregular area, seismic waves are trapped and refl ected between the topographic features. Therefore, the interaction between topographies can amplify seismic ground response. In order to reveal how interaction between topographies infl uences seismic response, several numerical fi nite element studies have been performed by using the ABAQUS program. The results show that topographic features a greater distance between the seismic source and the site would cause greater seismic motion amplifi cation and is perceptible for the hills far away from the source and the ridges. Also, site acceleration response is impacted by surrounding topography further than site velocity and displacement response. 展开更多
关键词 TOPOGRAPHY eff ECTS surrounding TOPOGRAPHY site seismic response ABAQUS PROGRAM and PLAXIS PROGRAM
下载PDF
Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations 被引量:7
13
作者 Liang Fayun Chen Haibing Huang Maosong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第3期487-498,共12页
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the O... To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the Open Sees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice. 展开更多
关键词 three dimensional soil column seismic ground response centrifugal model test nonlinear analysis accuracyverification
下载PDF
Effect of site amplification on inelastic seismic response 被引量:4
14
作者 Adhikary S Singh Y 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第3期535-554,共20页
The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility ... The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility demand, on the eff ective periods, is investigated, and inelastic site amplifi cation is shown to be strongly correlated to the normalized eff ective period. Two non-dimensional parameters, analogous to the conventional site amplifi cation factors in codes, are defi ned to quantify the inelastic site amplifi cation. It is shown that the inelastic site amplifi cation factor (i.e. ratio of constant ductility spectral ordinates at soil site to those at rock outcrop) is able to represent the site eff ects more clearly, as compared to the inelastic site amplifi cation ratio (i.e. ratio of inelastic spectral ordinates at soil site to the corresponding elastic spectral ordinates at rock outcrop). Further, the peak in the amplifi cation factor corresponding to the eff ective site period diminishes rapidly with increasing ductility demand. 展开更多
关键词 SITE amplifi CATION normalized response SPECTRA eff ective period INELASTIC seismic response INELASTIC SITE amplifi CATION factor
下载PDF
Seismic responses of high concrete face rockfill dams:A case study 被引量:6
15
作者 Sheng-shui Chen Zhong-zhi Fu +1 位作者 Kuang-ming Wei Hua-qiang Han 《Water Science and Engineering》 EI CAS CSCD 2016年第3期195-204,共10页
Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent s... Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent strain model. The relevant parameters were obtained either by back analysis using the field observations or by reference to parameters of similar rockfill materials. The acceleration responses of the dam,the distribution of earthquake-induced settlement, and the gap propagation under the concrete slabs caused by the settlement of the dam were analyzed and compared with site investigations or relevant studies. The mechanism of failure of horizontal construction joints was also analyzed based on numerical results and site observations. Numerical results show that the input accelerations were considerably amplified near the top of the dam, and the strong shaking resulted in considerable settlement of the rockfill materials, with a maximum value exceeding 90 cm at the crest.As a result of the settlement of rockfill materials, the third-stage concrete slabs were separated from the cushion layer. The rotation of the cantilever slabs about the contacting regions, under the combined action of gravity and seismic inertial forces, led to the failure of the construction joints and tensile cracks appeared above the construction joints. The effectiveness and limitations of the so-called equivalent linear method are also discussed. 展开更多
关键词 Concrete face ROCKFILL DAM (CFRD) seismic response Zipingpu PERMANENT strain Construction joint VISCOELASTIC model Finite element method
下载PDF
Seismic Response Control of Offshore Platform Structures with Shape Memory Alloy Dampers 被引量:5
16
作者 李宏男 何晓宇 霍林生 《China Ocean Engineering》 SCIE EI 2005年第2期185-194,共10页
In this study, the seismic response control of offshore platform structures with Shape Memory Alloy (SMA) dampers is investigated. A new SMA damper and its restoring force model are introduced for the calculation of s... In this study, the seismic response control of offshore platform structures with Shape Memory Alloy (SMA) dampers is investigated. A new SMA damper and its restoring force model are introduced for the calculation of seismic response reduction. Based on an actual platform structure and its mechanical model, the parameters which may affect the rate of shock absorption are analyzed, such as the number, position and characteristics of the SMA dampers and the condition of the site where the platform is located. The results show that the SMA damper is an effective control device for offshore platforms and satisfactory control can be achieved by proper selection of the parameters. 展开更多
关键词 offshore platform SMA damper vibration control seismic response
下载PDF
Seismic response analysis of continuous rigid frame bridge considering canyon topography effects under incident SV waves 被引量:7
17
作者 Guoliang Zhou Xiaojun Li Xingjun Qi 《Earthquake Science》 CSCD 2010年第1期53-61,共9页
To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two... To evaluate the importance of the canyon topography effects on large structures, based on a rigid frame bridge across a 137-m-deep and 600-m-wide canyon, the seismic response of the canyon site is analyzed using a two-dimensional finite element model under different seismic SV waves with the assumptions of vertical incidence and oblique incidence to obtain the ground motions, which are used as the excitation input on the pier foundations of the bridge with improved large mass method. The results indicate that canyon topography has significant influences on the ground motions in terms of inci- dent angle. The peak ground acceleration values vary greatly from the bottom of the canyon to the upper comers. Under ver- tical incident SV waves, at the upper comers of canyon the peak ground accelerations greatly increase; whereas the peak ground accelerations diminish at the bottom comers of canyon. Under oblique incident SV waves, the shaking of the canyon slope perpendicular to the incidence direction is much more severe than that of the opposite side of canyon. And the ground surface has been characterized by larger deformations in the case of oblique incident waves. It is also concluded that the low piers and frame of the continuous rigid frame bridge ape more sensitive to the multi-support seismic excitations than the flexible high piers. The canyon topography as well as the oblique incidence of the waves brings the continuous rigid frame bridge severe responses, which should be taken into account in bridge design. 展开更多
关键词 rigid frame bridge canyon topography effect multi-support excitation improved large-mass method seismic response
下载PDF
Experimental study on the seismic response of braced reinforced concrete frame with irregular columns 被引量:6
18
作者 Xiao Jianzhuang Li Jie Chen Jun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期487-494,共8页
A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K... A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China. 展开更多
关键词 seismic response reinforced concrete braced frame irregular columns
下载PDF
Seismic Response of Submerged Floating Tunnel Tether 被引量:5
19
作者 苏志彬 孙胜男 《China Ocean Engineering》 SCIE EI CSCD 2013年第1期43-50,共8页
A mathematical equation for vibration of submerged floating tunnel tether under the effects of earthquake and parametric excitation is presented. Multi-step Galerkin method is used to simplify this equation and the fo... A mathematical equation for vibration of submerged floating tunnel tether under the effects of earthquake and parametric excitation is presented. Multi-step Galerkin method is used to simplify this equation and the fourth-order Runge-Kuta integration method is used for numerical analysis. Finally, vibration response of submerged floating tunnel tether subjected to earthquake and parametric excitation is analyzed in a few numerical examples. The results show that the vibration response of tether varies with the seismic wave type; the steady maximum mid-span displacement of tether subjected to seismic wave keeps constant when parametric resonance takes place; the transient maximum mid-span displacement of tether is related to the peak value of input seismic wave acceleration. 展开更多
关键词 submerged floating tunnel seismic response Runge-Kuta integration method TETHER parametric excitation
下载PDF
Seismic response of skewed RC box-girder bridges 被引量:4
20
作者 Ahmed Abdel-Mohti Gokhan Pekcan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第4期415-426,共12页
It is critical to ensure the functionality of highway bridges after earthquakes to provide access to important facilities. Since the 1971 San Fernando earthquake, there has been a better understanding of the seismic p... It is critical to ensure the functionality of highway bridges after earthquakes to provide access to important facilities. Since the 1971 San Fernando earthquake, there has been a better understanding of the seismic performance of bridges. Nonetheless, there are no detailed guidelines addressing the performance of skewed highway bridges. Several parameters affect the response of skewed highway bridges under both service and seismic loads which makes their behavior complex. Therefore, there is a need for more research to study the effect of skew angle and other related factors on the performance of highway bridges. This paper examines the seismic performance of a three-span continuous concrete box girder bridge with skew angles from 0 to 60 degrees, analytically. Finite element (FE) and simplified beam-stick (BS) models of the bridge were developed using SAP2000. Different types of analysis were considered on both models such as: nonlinear static pushover, and linear and nonlinear time history analyses. A comparison was conducted between FE and BS, different skew angles, abutment support conditions, and time history and pushover analysis. It is shown that the BS model has the capability to capture the coupling due to skew and the significant modes for moderate skew angles. Boundary conditions and pushover load profile are determined to have a major effect on pushover analysis. Pushover analysis may be used to predict the maximum deformation and hinge formation adequately. 展开更多
关键词 skew bridge seismic response pushover analysis time history analysis MODELING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部