期刊文献+
共找到2,474篇文章
< 1 2 124 >
每页显示 20 50 100
High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells
1
作者 Tong Mu Lele Wang +3 位作者 Qian Wang Yang Wu Patric Jannasch Jingshuai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期512-523,共12页
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped... This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology. 展开更多
关键词 high temperature polymer electrolyte membrane Imidazole-containing polymer Chemical stability Fuel cell
下载PDF
Amino-modified UiO-66-NH_(2) reinforced polyurethane based polymer electrolytes for high-voltage solid-state lithium metal batteries
2
作者 Danru Huang Lin Wu +5 位作者 Qi Kang Zhiyong Shen Qiaosheng Huang Wenjie Lin Fei Pei Yunhui Huang 《Nano Research》 SCIE EI CSCD 2024年第11期9662-9670,共9页
Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared... Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared to traditional liquid electrolytes.However,low ionic conductivity and side reactions occurring in traditional high-voltage lithium metal batteries(LMBs)hinder their practical applications.Here,amino-modified metal-organic frameworks(UiO-66-NH_(2))with abundant defects as multifunctional fillers in the polyurethane based SPEs achieve the collaborative promotion of the mechanical strength and room temperature ionic conductivity.The surface modified amino groups serve as anchoring points for oxygen atoms of polymer chains,forming a firmly hydrogen-bond interface with polycarbonate-based polyurethane frameworks.The rich interfaces between UiO-66-NH_(2) and polymers dramatically decrease the crystallization of polymer chains and reduce ion transport impedance,which markedly boosted the ionic conductivity to 2.1×10^(−4) S·cm^(−1) with a high Li+transference numbers of 0.71.As a result,LiFePO4∣SPEs∣Li cells exhibit prominent cyclability for 700 cycles under 0.5 C with 96.5%capacity retention.The LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)∣SPEs∣Li cells deliver excellent long-term lifespan for 260 cycles with a high capacity retention of 91.9%and high average Coulombic efficiency(98.5%)under ambient conditions.This simple and effective hybrid SPE design strategy sheds a milestone significance light for high-voltage Li-metal batteries. 展开更多
关键词 solid-state polymer electrolyte metal-organic frameworks POLYURETHANE lithium metal batteries high voltage interface
原文传递
Incombustible solid polymer electrolytes:A critical review and perspective
3
作者 Kai Wu Jin Tan +4 位作者 Zhenfang Liu Chenguang Bao Ao Li Qi Liu Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期264-281,I0007,共19页
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens... Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries. 展开更多
关键词 Non-flammable electrolyte Solid polymer electrolyte high safety electrolyte Solid state electrolyte Solid state battery
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
4
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
High-Performance Quasi-Solid-State Pouch Cells Enabled by in situ Solidification of a Novel Polymer Electrolyte 被引量:3
5
作者 Qingwen Lu Changhong Wang +9 位作者 Danni Bao Hui Duan Feipeng Zhao Kieran Doyle-Davis Qiang Zhang Rennian Wang Shangqian Zhao Jiantao Wang Huan Huang Xueliang Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期15-21,共7页
Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been pr... Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety. 展开更多
关键词 high areal capacity high-energy-density pouch cells in situ solidification poly(ethylene glycol)diacrylate-based polymer electrolyte
下载PDF
A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors 被引量:1
6
作者 Yuge Bai Chao Yang +6 位作者 Boheng Yuan Hongjie Li Weimeng Chen Haosen Yin Bin Zhao Fei Shen Xiaogang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期41-50,I0002,共11页
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie... Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices. 展开更多
关键词 Gel polymer electrolyte UV cross-linking Energy density high voltage window
下载PDF
Analysis of Polymer Impurities in Cephalosporin Antibiotics
7
作者 Shiqiang OU Yanxi LAI +6 位作者 Peng XIE Hao LIU Shicheng LIU Jin QIN Yiping QIN Yizhang WANG Shengjiu GU 《Medicinal Plant》 2024年第5期22-26,30,共6页
[Objectives]To establish a HPLC-MS method for the determination of polymer impurities in cefathiamidine and its preparations.[Methods]Kromasil 100-5 C_(18) column(4.6 mm ×250 mm,5μm)was used for analysis;mobile ... [Objectives]To establish a HPLC-MS method for the determination of polymer impurities in cefathiamidine and its preparations.[Methods]Kromasil 100-5 C_(18) column(4.6 mm ×250 mm,5μm)was used for analysis;mobile phase ammonium acetate solution(pH 6.30)-acetonitrile,gradient elution;volumetric flow rate 1.0 mL/min;column temperature 40℃;multi-reaction monitoring mode was used for analysis,and positive ion scanning was chosen as the electrospray ion source.[Results]The resolution between impurities and main peaks under this method was greater than 1.5,and 8 known impurities and 2 polymer impurities could be completely separated and distinguish-ed.It was inferred that the molecular ion peak[M+H]^(+):m/z727.1874,m/z 785.1937 was the possible polymer impurity of this product.[Conclusions]A method for the analysis of polymer impurities in cefathiamidine and its preparations was formed,which could achieve the purpose of simultaneous analysis of small molecule impurities and polymer impurities,and could better control the content of single impurities in the polymer,providing a reliable inspection basis for strict control of cefathiamidine quality. 展开更多
关键词 CEFATHIAMIDINE Cephalosporin polymer impurities Impurity analysis high Performance Liquid Chromatography-Mass Spectrometry
下载PDF
High Water Resistance and Enhanced Mechanical Properties of Bio-Based Waterborne Polyurethane Enabled by in-situ Construction of Interpenetrating Polymer Network
8
作者 Henghui Deng Jingyi Lu +5 位作者 Dunsheng Liang Xiaomin Wang Tongyao Wang Weihao Zhang Jing Wang Chaoqun Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1209-1222,共14页
In this study,acrylic acid was used as a neutralizer to prepare bio-based WPU with an interpenetrating polymer network structure by thermally induced free radical emulsion polymerization.The effects of the content of ... In this study,acrylic acid was used as a neutralizer to prepare bio-based WPU with an interpenetrating polymer network structure by thermally induced free radical emulsion polymerization.The effects of the content of acrylic acid on the properties of the resulting waterborne polyurethane-poly(acrylic acid)(WPU-PAA)dispersion and the films were systematically investigated.The results showed that the cross-linking density of the interpenetrating network polymers was increased and the interlocking structure of the soft and hard phase dislocations in the molecular segments of the double networks was tailored with increasing the content of acrylic acid,leading to enhancement of the mechanical properties and water resistance of WPU-PAA films.Notably,with the increase in content of acrylic acid,the tensile strength,Young’s modulus,and toughness of the WPU-PAA-110 film increased by 3 times,and 8 times,and 2.4 times compared with WPU-PAA-80,respectively.The WPU-PAA-100 film showed the best water resistance,and the water absorption rate at 96 h was only 3.27%.This work provided a new design scheme for constructing bio-based WPU materials with excellent properties. 展开更多
关键词 Bio-based waterborne polyurethane interpenetrating polymer network highly water resistance superior mechanical performance
下载PDF
Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries:A Review 被引量:12
9
作者 Hongmei Liang Li Wang +4 位作者 Aiping Wang Youzhi Song Yanzhou Wu Yang Yang Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期266-297,共32页
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el... Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs. 展开更多
关键词 polymer Inorganic composite electrolytes All-solid-state lithium metal batteries FILLERS Ionic conductivity high voltage
下载PDF
Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries 被引量:8
10
作者 Hao Chen Mengting Zheng +5 位作者 Shangshu Qian Han Yeu Ling Zhenzhen Wu Xianhu Liu Cheng Yan Shanqing Zhang 《Carbon Energy》 SCIE CAS 2021年第6期929-956,共28页
Solid polymer electrolytes(SPEs)have become increasingly attractive in solid-state lithium-ion batteries(SSLIBs)in recent years because of their inherent properties of flexibility,processability,and interfacial compat... Solid polymer electrolytes(SPEs)have become increasingly attractive in solid-state lithium-ion batteries(SSLIBs)in recent years because of their inherent properties of flexibility,processability,and interfacial compatibility.However,the commercialization of SPEs remains challenging for flexible and high-energy-density LIBs.The incorporation of functional additives into SPEs could significantly improve the electrochemical and mechanical properties of SPEs and has created some historical milestones in boosting the development of SPEs.In this study,we review the roles of additives in SPEs,highlighting the working mechanisms and functionalities of the additives.The additives could afford significant advantages in boosting ionic conductivity,increasing ion transference number,improving high-voltage stability,enhancing mechanical strength,inhibiting lithium dendrite,and reducing flammability.Moreover,the application of functional additives in high-voltage cathodes,lithium-sulfur batteries,and flexible lithiumion batteries is summarized.Finally,future research perspectives are proposed to overcome the unresolved technical hurdles and critical issues in additives of SPEs,such as facile fabrication process,interfacial compatibility,investigation of the working mechanism,and special functionalities. 展开更多
关键词 functional additive high voltage ionic conductivity lithium-ion batteries solid polymer electrolyte
下载PDF
Modification of High Performances of Polymer Cement Concrete 被引量:2
11
作者 刘军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第1期61-64,共4页
The workability,mechanical and physical properties are investigated,based on the requirements of the high properties of polymer cement concrete (PCC).The research results reveal that PCC is greatly improved and streng... The workability,mechanical and physical properties are investigated,based on the requirements of the high properties of polymer cement concrete (PCC).The research results reveal that PCC is greatly improved and strengthened by adding appropriate polymer.At polymer/cement=0-0.15,its porosity decreases greatly due to the improved pore structure.The weak area at interface is strengthened.The workability,mechanical and physical properties are obviously enhanced with the proportion of polymer and cement.At the same time the properties are much improved under the adequate curing conditions and admixture (0-10%). 展开更多
关键词 polymer cement concrete high property
下载PDF
Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room‑Temperature Self‑Healing Capacity 被引量:7
12
作者 Huitao Yu Can Chen +4 位作者 Jinxu Sun Heng Zhang Yiyu Feng Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期194-207,共14页
Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects.However,in view of the complexity of composite structure and composition,its self-heal is faci... Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects.However,in view of the complexity of composite structure and composition,its self-heal is facing challenges.In this article,supramolecular effect is proposed to repair the multistage structure,mechanical and thermal properties of composite materials.A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester(PBA)–polydimethylsiloxane(PDMS)were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization.Then,by introducing the copolymer into a folded graphene film(FGf),a highly thermally conductive composite of PBA–PDMS/FGf with self-healing capacity was fabricated.The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA–PDMS could completely self-heal at room temperature in 10 min.Additionally,PBA–PDMS/FGf exhibits a high tensile strength of 2.23±0.15 MPa at break and high thermal conductivity of 13±0.2 W m^(−1)K^(−1);of which the self-healing efficiencies were 100%and 98.65%at room temperature for tensile strength and thermal conductivity,respectively.The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules,as well as polymer molecule and graphene.This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future. 展开更多
关键词 Carbon/polymer composites Self-healing capacity high thermal conductivity Molecular simulation Room temperature
下载PDF
HETEROAROMATIC POLYMERS—HIGH TEMPERATURE POLYPYRROLONES DERIVED FROM 2,6-BIS(3',4'-DIAMINOPHENYL)-4-BIPHENYLPYRIDINE AND VARIOUS AROMATIC DIANHYDRIDES 被引量:1
13
作者 Hai-xia Yang Jin-gang Liu +3 位作者 Xiao-juan Zhao Yan-feng Li Lin Fan Shi-yong Yang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第5期521-529,共9页
A new type of aromatic tetraarnine containing biphenyl moiety in the side chain was synthesized via a modified Chichibabin's reaction. 3-Nitro-4-acetamidoacetophenone was reacted with 4-phenyl benzaldehyde in the pre... A new type of aromatic tetraarnine containing biphenyl moiety in the side chain was synthesized via a modified Chichibabin's reaction. 3-Nitro-4-acetamidoacetophenone was reacted with 4-phenyl benzaldehyde in the presence of ammonium acetate to obtain 2,6-bis(3',4'-diaminophenyl)-4-biphenyl pyridine (DPPA). A series of polypyrrolones (PPys) were prepared using tetraamine and various aromatic dianhydrides via a two-step cyclization procedure. All the PPys show excellent high temperature stabilities with the initial decomposition temperatures of 530-549℃ and residual weight ratio of 49%-80% at 750℃ in nitrogen. The polymers exhibit no apparent glass transition temperatures (Tgs) except PPy-1 (Tg= 327℃), which is derived from tetraamine DPPA and 2,2-bis[4-(3',4'-dicarboxyphenoxy)-phenyl]propane dianhydride (BPADA). In addition, the polymers have acceptable mechanical properties with the tensile strength of 65-94 MPa. The PPy films show excellent hydrolysis-resistance in alkaline aqueous medium and could maintain most of the properties even after boiling in 10% aqueous sodium hydroxide solution for a week. 展开更多
关键词 Tetraamine Polypyrrolone PYRIDINE high temperature polymers Film Hydrolysis-resistance.
下载PDF
Ultrathin organic polymer with p-πconjugated structure for simultaneous photocatalytic disulfide bond generation and CO_(2)reduction
14
作者 Linquan Hou Zhunyun Tang +6 位作者 Guojiang Mao Shiheng Yin Bei Long Tao Ouyang Guo-Jun Deng Atif Ali Ting Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期639-647,I0016,共10页
Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin ... Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin organic polymer with p-πconjugated structure(TPP)was rationally designed and prepared,and showed a high yield of CO(15.2 mmol g^(-1))and conversion of SAS coupled products(100%),far exceeding the organic polymer with P=O structure.The enhanced photoredox activity of TPP is ascribed to the orbital interaction between the p-orbital on phosphorus and theπ-orbitals of aromatic,which can accelerate the photoinduced charge carrier separation and improve the CO_(2)adsorption capacity.TPP can also be used for the dehydrocoupling of various benzyl mercaptans to the corresponding SAS bond products.This work provides a new concept for the efficient synthesis of disulfide bonds combined with CO_(2)reduction in a photoreaction system. 展开更多
关键词 Photocatalytic coupled reaction Disulfide bond CO_(2)reduction high activity Organic polymer
下载PDF
Plugging property and displacement characters of a novel high-temperature resistant polymer nanoparticle 被引量:1
15
作者 Zhi-Yong Wang Mei-Qin Lin +3 位作者 Huai-Ke Li Zhao-Xia Dong Juan Zhang Zi-Hao Yang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期387-396,共10页
The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influen... The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influence on the plugging effect of the high-temperature swelled polymer nanoparticles,such as the core permeability,concentration of nanoparticles in the suspension,swelling time and swelling temperature,which makes it flexible to control the plugging effect by controlling displacement experiments conditions.Experimental results show that polymer nanoparticles dispersion system with a concentration of 500 mg/L is suitable for cores plugging with a permeability of 30×10^(-3)-150×10^(-3)μm^(2),even after aging at 150℃ for three months.The shunt flow experiments show that when the displacement factors are optimal values,the polymer nanoparticles after high temperature swelling to plug the high-permeability layer selectivity and almost do not clog the low-permeability layer.Oil recovery of homogeneous artificial core displacement experiment and a heterogeneous double-tube cores model are increased by 20%and 10.4%on the basis of water flooding.The polymer nanoparticles can be a great help for petroleum engineers to better apply this deep profile control and flooding technology. 展开更多
关键词 polymer nanoparticles high temperature resistance Plugging property EOR
下载PDF
Functional copolymer binder for nickel-rich cathode with exceptional cycling stability at high temperature through coordination interaction 被引量:1
16
作者 Mihan Jin Bing Li +3 位作者 Linlin Hu Peiyu Zhao Qilu Zhang Jiangxuan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期156-161,共6页
Nickel-rich layered oxide LiNi_(1-x-y)Co_(x)Al_yO_(2)(NCA) with high theoretical capacity is a promising cathode material for the next-generation high-energy batteries.However,it undergoes a rapid capacity fading when... Nickel-rich layered oxide LiNi_(1-x-y)Co_(x)Al_yO_(2)(NCA) with high theoretical capacity is a promising cathode material for the next-generation high-energy batteries.However,it undergoes a rapid capacity fading when operating at high temperature due to the accelerated cathode/electrolyte interfacial reactions and adhesive efficacy loss of conventional polyvinylideneffuoride(PVdF) binder.Herein,poly(acrylonitrile-co-methyl acrylate) copolymer is designed with electron-rich-C≡N groups as a novel binder for LiNi_(0.8)Co_(0.1)Al_(0.1)O_(2) cathode at high temperature.The electron-rich-C≡N groups are able to coordinate with the active Ni^(3+) on the surface of NCA,alleviating electrolyte decomposition and cathode structure degradation.Moreover,the strong adhesive ability is conducive to maintain integrity of electrodes upon cycling at 55℃.In consequence,the NCA electrodes with this functional binder display improved cycling stability(81.5% capacity retention after 100 cycles) and rate performance at 55℃. 展开更多
关键词 polymer binder Nickel-rich cathode Coordination interaction high temperature Lithium-ion batteries
下载PDF
A cerium-doped NASICON chemically coupled poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries 被引量:1
17
作者 Tao Huang Wei Xiong +13 位作者 Xue Ye Zhencheng Huang Yuqing Feng Jianneng Liang Shenghua Ye Jishou Piao Xinzhong Wang Yongliang Li Xiangzhong Ren Chao Chen Shaoluan Huang Xiaoping Ouyang Qianling Zhang Jianhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期311-321,I0007,共12页
The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we develop... The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively. 展开更多
关键词 Quasi-solid-state batteries Composite polymer electrolytes high conductivity high-voltage cathode Oxygen vacancies
下载PDF
Approaches for Making High Performance Polymer Materials from Commodity Polymers 被引量:2
18
作者 Xu Xi The State Key Lab. of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University (Chengdu 610065, China) Research Institute of Polymer Materials of Shanghai Jiao Tong University (Shanghai 200240, China) 《合成化学》 CAS CSCD 2004年第z1期4-4,共1页
关键词 Approaches for Making high Performance polymer Materials from Commodity polymers
下载PDF
Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs 被引量:5
19
作者 Xiali Ding Jing Yang Yuming Dong 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2018年第2期75-85,共11页
The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographer... The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency. 展开更多
关键词 high-PERFORMANCE LIQUID chromatography polymer MONOLITH Preparation methods Small molecules
下载PDF
High pressure and high temperature induced polymerization of C60 quantum dots
20
作者 Shi-Hao Ruan Chun-Miao Han +2 位作者 Fu-Lu Li Bing Li Bing-Bing Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期396-400,共5页
We synthesized C60 quantum dots(QDs) with a uniform size by a modified ultrasonic process and studied its polymerization under high pressure and high temperature(HPHT).Raman spectra showed that a phase assemblage of a... We synthesized C60 quantum dots(QDs) with a uniform size by a modified ultrasonic process and studied its polymerization under high pressure and high temperature(HPHT).Raman spectra showed that a phase assemblage of a dimer(D) phase(62 vol%) and a one-dimensional chain orthorhombic(O) phase(38 vol%) was obtained at 1.5 GPa and 300℃.At 2.0 GPa and 430℃,the proportion of the O phase increased to 46 vol%,while the corresponding D phase decreased to 54 vol%.Compared with bulk and nanosized C60,C60 QDs cannot easily form a high-dimensional polymeric structure.This fact is probably caused by the small particle size,orientation of the disordered structure of C60 QDs,and the barrier of oxide function groups between C60 molecules.Our studies enhance the understanding of the polymerization behavior of low-dimension C60 nanomaterials under HPHT conditions. 展开更多
关键词 C60 quantum DOTS high pressure and high temperature FULLERENE polymer
下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部