Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
First, the paper analyzes the advantages and disadvantages of all kinds of reactive power compensation technology, and then proposes a principle and integrated control strategy of the composite operation of TSC and SV...First, the paper analyzes the advantages and disadvantages of all kinds of reactive power compensation technology, and then proposes a principle and integrated control strategy of the composite operation of TSC and SVG, also the paper designs and develops the main controller of Network based composite power quality regulation device, based on RTDS, the real-time digital simulation model of The Device is established, and finally the prototype of the device is developed with the function of filter and split-phase compensation. The main controller determines the cooperative operation of both TSC and SVG, and the switching strategy of TSC. The simulation result in RTDS can verify the precision of the measure system and the validity of the control logic, the prototype has finished the type test according to the national standard.展开更多
The Context: Aims: To evaluate the biocompatibility and in vitro genotoxicity of a non-copper nano silica polymer modified composite for filtering-type intra-vas devices. Settings and Design: Academic research laborat...The Context: Aims: To evaluate the biocompatibility and in vitro genotoxicity of a non-copper nano silica polymer modified composite for filtering-type intra-vas devices. Settings and Design: Academic research laboratory, Huazhong University of Science and Technology. Prospective experimental study. Methods and Material: Non-copper nano silica polymer modified composite rods were implanted into the back muscle of rabbits for biocompatibility evaluation. Comet assay was applied to the determination of DNA damage, while, Mutagenic activity was tested by means of Ames test using Salmonella typhimurium TA98 and TA 100 tester strains with and without metabolic activation. Statistical analysis used: qualitative and quantitative data were tested using the Chi-square test and Student’s test. Results: Only mild inflammatory reaction was observed in the surrounding tissues of the implanted nano-silica modified polymer composite in the early implantation stage, which was similar to that of the sham-operated group. The inflammatory reaction was completely disappeared after 12 weeks. No significant DNA damage (P > 0.05) were tested on the nano-silica modified polymer composite in Comet assay. In Ames test, the extracts from non-copper composite did not exert mutagenic effect on the bacterial. Conclusions: The non-copper nano silica modified composite did not exhibit in vitro genotoxicity and obvious inflammation in tissue, it would be a safe biomaterial for further clinical trial.展开更多
Background: Effective polymerization of the composite resin is essential to obtain long term clinical success and has a great importance obtaining improved mechanical properties. The purpose of this study was to measu...Background: Effective polymerization of the composite resin is essential to obtain long term clinical success and has a great importance obtaining improved mechanical properties. The purpose of this study was to measure the effect of the light intensity of LED and QTH curing devices in relation to the light distances, on the hardness (KHN) of two light cure nano-resin composite. Material and Methods: The top and bottom surfaces of the two nanofill composite specimens were evaluated. Two LED and two QTH light curing devices were used at nine different distances. Light intensity was measured with two radiometers placed at these same distances from the curing tip. 360 pvc dies were prepared with circular cavity 3 mm in diameter and 2 mm thick. The tested materials were placed in each cavity. The different light curing distances were standardized by adding pvc spacers dies at different height matching the different distances. Top and bottom surface microhardness were evaluated with a Micro Hardness Tester in knoop hardness numbers (Kg/mm2). Data were statistically analyzed using: Three-way ANOVA, Tukey and Pearsons test. Results: It was revealed that there was a statistically significant difference in microhardness between the composites (p < 0.001), between the nine distances (p < 0.001) and between the four light curing devices (p < 0.001). Increasing the distance of the light source from composite resin, the light intensity and the microhardness values at the top and bottom surface decrease. LED light curing devices produced a greater microhardness results at the bottom surface of the specimens. The Filtek Ultimate nanocomposite (3 m) showed highest microhardness values on the top and bottom surfaces, polymerized with all four curing devices and all nine distances compared to Empress Direct nano composite (Ivoclar vivadent). Clinical significant: Even with high power LED curing light, the distance between the tip of the light source and the restoration surface should be as close as possible. In this study, Filtek Ultimate showed better results (highest microhardness values) than Empress Direct.展开更多
Detailed mathematical modelling approaches that are used to describe the dynamic behaviour of magnetoelectric coupling in magnetostrictive-piezoelectric multiferroics at low-frequencies, in electromechanical resonance...Detailed mathematical modelling approaches that are used to describe the dynamic behaviour of magnetoelectric coupling in magnetostrictive-piezoelectric multiferroics at low-frequencies, in electromechanical resonance region and at microwave range are discussed. The ME (magnetoelectric) voltage coefficients were estimated from the known material parameters. The feasibility for creating new class of functional devices based on magnetoelectric interactions is addressed.展开更多
The article presents a structural diagram and the principle of operation of the installation of a sewing machine for applying a polymer composition to the stitch lines of tarpaulin materials. The calculation schemes a...The article presents a structural diagram and the principle of operation of the installation of a sewing machine for applying a polymer composition to the stitch lines of tarpaulin materials. The calculation schemes and the mathematical model of oscillations of the axis of the composite roller during the application of the polymer composition along the lines of tarpaulin materials are presented. Based on the numerical solution of the problem, the regularities of roller oscillations are presented. The main parameters of the system are substantiated.展开更多
The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows.In this research,WO_(3)/Ag and TiO_(2)/NiO composite thin films were separately ...The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows.In this research,WO_(3)/Ag and TiO_(2)/NiO composite thin films were separately prepared by the hydrothermal method combined with electrodeposition.The electrochromic properties of the single WO_(3) thin film were optimized,and TiO_(2)/NiO composite films showed better electrochromic performance than that of the single NiO film.WO_(3)/Ag and TiO_(2)/NiO composite films with excellent electrochromic properties were respectively chosen as the cathode and the anode to construct a WO_(3)/Ag‒TiO_(2)/NiO electrochromic device.The response time(tc=4.08 s,tb=1.08 s),optical modulation range(35.91%),and coloration efficiency(30.37 cm^(2)·C^(-1))of this electrochromic device are better than those of WO_(3)-NiO and WO_(3)/Ag-NiO electrochromic devices.This work provides a novel research idea for the performance enhancement of electrochromic smart windows.展开更多
The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron co...The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron composition contrast observation was introduced and discussed. By using multilayer P+Si1-xGex/pSi heterojunction internal photoemission infrared detector as an example, the applications of secondary electron composition contrast imaging in microstructure studies on heterojunction semiconducting materials and devices were stated. The characteristics of the image were compared with the ordinary transmission electron diffraction contrast image. The prospects of applications of the imaging method in heterojunction semiconductor devices and multilayer materials are also discussed.展开更多
Flexible electronic devices with mechanical properties like the soft tissues of human organs have great potential for the next generation of wearable and implantable electronic devices.Self-healing hydrogel composites...Flexible electronic devices with mechanical properties like the soft tissues of human organs have great potential for the next generation of wearable and implantable electronic devices.Self-healing hydrogel composites typically have high tensile strength,high electrical conductivity and damage repair properties and have wide applications in flexible electronics,such as human-computer interaction,health detection and soft robots.Various self-healing hydrogel composites have been developed to produce new stretchable conductive materials with satisfactory mechanical and selfhealing properties.This paper presents the fabrication of self-healing hydrogel composites and their application in flexible electronic devices.Firstly,the repair mechanism of physically cross-linked and chemically cross-linked self-healing hydrogel composites is presented.Secondly,self-healing double network hydrogels,self-healing nanocomposite hydrogels and double crosslinked self-healing hydrogel composites and their applications in flexible sensors,energy harvesting devices,energy storage devices and optical devices are presented and discussed.Finally,the challenges and prospects of self-healing hydrogel composites in flexible electronic devices in the future are presented.展开更多
Photoconductive properties of photodiodes based on composites of CuS nanoparticles and Poly[2-methoxy,5- (2'-ethylhexyloxy)-p-phenylenevlnylene] (MEH-PPV) are investigated. By comparing composite devices with dif...Photoconductive properties of photodiodes based on composites of CuS nanoparticles and Poly[2-methoxy,5- (2'-ethylhexyloxy)-p-phenylenevlnylene] (MEH-PPV) are investigated. By comparing composite devices with different MEH-PPV:CuS weight ratios of l:l (D2-1), 1:1.25 (D2-2), 1:2.5 (132-3) and 1:5 (D2-4), it is found that the device D2 3 exhibited the best performance: the short-circuit current density of 17μA/cm^2 with the light intensity of 16.7mW/cm^2, the highest open-circuit voltage of 0,83 V, and the photosensitivity of 132 at reverse bias of - 1 V. The photosensitivity is improved by a factor of 5 compared with the undoped MEH-PPV device.展开更多
A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly( ethylene tereph...A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly( ethylene terephthalate ) (PET) and polyethylene (PE) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable calcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin-apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite coruposite coating.展开更多
Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during...Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold.展开更多
With an ever increasing energy demand and environmental issues, many state-of-the-art nanostructured electrode materials have been developed for energy storage devices and they include batteries, supercapacitors and f...With an ever increasing energy demand and environmental issues, many state-of-the-art nanostructured electrode materials have been developed for energy storage devices and they include batteries, supercapacitors and fuel cells. Among these electrode materials, L-TMD (layered transition metal dichalcogenide) nanosheets (especially, S (sulfur) and Se (selenium) based dichaleogenides) have received a lot of attention due to their intriguing layered structure for enhanced electrochemical properties. L-TMD composites have recently been investigated not only as a main charge storage specie but also, as a substrate to hold the active specie. This review highlights the recent advancements in L-TMD composites with 0D (0-dimensional), 1 D, 2D, 3D and various forms of carbon structures and their potential applications in LIB (lithium ion battery) and SIB (sodium ion battery).展开更多
The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkabl...The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkable reduction of bending stresses in the arches and tie beams. The present paper describes the main features of the design and construction of several long-span arch bridges of this typology in Spain: the three pedestrian footbridges for the Madrid cycling ring track, with spans of 52, 60 and 80 m, the Bridge over River Deba in Guipuzcoa with a span of 110 m and Palma del Rio Bridge over River Guadalquivir in Cordoba, 130 m long. In all cases, two inclined arches linked at the crown were implemented, a very effective disposition to reduce the out-of-plane buckling length. The multiple crossings of the hanger system, consisting of prestressed bars in the case of Deba Bridge and the footbridges, and locked coil cables for Palma del Rio Bridge, were dealt with by means of crossing devices which led to a technically satisfactory solution with minimal visual impact. An innovative approach to bowstring arches was introduced in Valdebebas Bridge over M-12 motorway in Madrid, next to the new T-4 Terminal of Barajas Airport, with a span of 162 m, where the hangers are replaced by a structural steel mesh -diagrid- which acts as the web of a simply-supported beam whose compression head is the arch and the tie beam is the deck.展开更多
Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the indi...Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.展开更多
Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in futureFlat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to the...Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in futureFlat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to theircommercialization. Here we present a brief summary of our studies on both extrinsic and intrinsic causes for the fastdegradation of OLEDs. In particular, we focus on the origin of the dark spots by 'rebuilding' cathodes, which confirms thatthe growth of dark spots occurs primarily due to cathode delamination. In the meantime, we recapture the findings from thesearch for suitable OLED packaging materials, in particular polymer composites, which provide both heat dissipation andmoisture resistance, in addition to electrical insulation.展开更多
The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce s...The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.展开更多
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
文摘First, the paper analyzes the advantages and disadvantages of all kinds of reactive power compensation technology, and then proposes a principle and integrated control strategy of the composite operation of TSC and SVG, also the paper designs and develops the main controller of Network based composite power quality regulation device, based on RTDS, the real-time digital simulation model of The Device is established, and finally the prototype of the device is developed with the function of filter and split-phase compensation. The main controller determines the cooperative operation of both TSC and SVG, and the switching strategy of TSC. The simulation result in RTDS can verify the precision of the measure system and the validity of the control logic, the prototype has finished the type test according to the national standard.
文摘The Context: Aims: To evaluate the biocompatibility and in vitro genotoxicity of a non-copper nano silica polymer modified composite for filtering-type intra-vas devices. Settings and Design: Academic research laboratory, Huazhong University of Science and Technology. Prospective experimental study. Methods and Material: Non-copper nano silica polymer modified composite rods were implanted into the back muscle of rabbits for biocompatibility evaluation. Comet assay was applied to the determination of DNA damage, while, Mutagenic activity was tested by means of Ames test using Salmonella typhimurium TA98 and TA 100 tester strains with and without metabolic activation. Statistical analysis used: qualitative and quantitative data were tested using the Chi-square test and Student’s test. Results: Only mild inflammatory reaction was observed in the surrounding tissues of the implanted nano-silica modified polymer composite in the early implantation stage, which was similar to that of the sham-operated group. The inflammatory reaction was completely disappeared after 12 weeks. No significant DNA damage (P > 0.05) were tested on the nano-silica modified polymer composite in Comet assay. In Ames test, the extracts from non-copper composite did not exert mutagenic effect on the bacterial. Conclusions: The non-copper nano silica modified composite did not exhibit in vitro genotoxicity and obvious inflammation in tissue, it would be a safe biomaterial for further clinical trial.
文摘Background: Effective polymerization of the composite resin is essential to obtain long term clinical success and has a great importance obtaining improved mechanical properties. The purpose of this study was to measure the effect of the light intensity of LED and QTH curing devices in relation to the light distances, on the hardness (KHN) of two light cure nano-resin composite. Material and Methods: The top and bottom surfaces of the two nanofill composite specimens were evaluated. Two LED and two QTH light curing devices were used at nine different distances. Light intensity was measured with two radiometers placed at these same distances from the curing tip. 360 pvc dies were prepared with circular cavity 3 mm in diameter and 2 mm thick. The tested materials were placed in each cavity. The different light curing distances were standardized by adding pvc spacers dies at different height matching the different distances. Top and bottom surface microhardness were evaluated with a Micro Hardness Tester in knoop hardness numbers (Kg/mm2). Data were statistically analyzed using: Three-way ANOVA, Tukey and Pearsons test. Results: It was revealed that there was a statistically significant difference in microhardness between the composites (p < 0.001), between the nine distances (p < 0.001) and between the four light curing devices (p < 0.001). Increasing the distance of the light source from composite resin, the light intensity and the microhardness values at the top and bottom surface decrease. LED light curing devices produced a greater microhardness results at the bottom surface of the specimens. The Filtek Ultimate nanocomposite (3 m) showed highest microhardness values on the top and bottom surfaces, polymerized with all four curing devices and all nine distances compared to Empress Direct nano composite (Ivoclar vivadent). Clinical significant: Even with high power LED curing light, the distance between the tip of the light source and the restoration surface should be as close as possible. In this study, Filtek Ultimate showed better results (highest microhardness values) than Empress Direct.
文摘Detailed mathematical modelling approaches that are used to describe the dynamic behaviour of magnetoelectric coupling in magnetostrictive-piezoelectric multiferroics at low-frequencies, in electromechanical resonance region and at microwave range are discussed. The ME (magnetoelectric) voltage coefficients were estimated from the known material parameters. The feasibility for creating new class of functional devices based on magnetoelectric interactions is addressed.
文摘The article presents a structural diagram and the principle of operation of the installation of a sewing machine for applying a polymer composition to the stitch lines of tarpaulin materials. The calculation schemes and the mathematical model of oscillations of the axis of the composite roller during the application of the polymer composition along the lines of tarpaulin materials are presented. Based on the numerical solution of the problem, the regularities of roller oscillations are presented. The main parameters of the system are substantiated.
基金supported by the Natural Science Foundation of Chongqing City(Grant Nos.CSTB2022NSCQ-MSX0751 and cstc2021jcyj-msxmX0500)the Education Department Project of Jilin Province(Grant No.JJKH20220726KJ)+1 种基金the Science and Technology Department Project of Jilin Province(Grant No.20200201077JC)the National Natural Science Foundation of China(Grant No.U2141239).
文摘The choice of cathode and anode materials for electrochromic devices plays a key role in the performance of electrochromic smart windows.In this research,WO_(3)/Ag and TiO_(2)/NiO composite thin films were separately prepared by the hydrothermal method combined with electrodeposition.The electrochromic properties of the single WO_(3) thin film were optimized,and TiO_(2)/NiO composite films showed better electrochromic performance than that of the single NiO film.WO_(3)/Ag and TiO_(2)/NiO composite films with excellent electrochromic properties were respectively chosen as the cathode and the anode to construct a WO_(3)/Ag‒TiO_(2)/NiO electrochromic device.The response time(tc=4.08 s,tb=1.08 s),optical modulation range(35.91%),and coloration efficiency(30.37 cm^(2)·C^(-1))of this electrochromic device are better than those of WO_(3)-NiO and WO_(3)/Ag-NiO electrochromic devices.This work provides a novel research idea for the performance enhancement of electrochromic smart windows.
文摘The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron composition contrast observation was introduced and discussed. By using multilayer P+Si1-xGex/pSi heterojunction internal photoemission infrared detector as an example, the applications of secondary electron composition contrast imaging in microstructure studies on heterojunction semiconducting materials and devices were stated. The characteristics of the image were compared with the ordinary transmission electron diffraction contrast image. The prospects of applications of the imaging method in heterojunction semiconductor devices and multilayer materials are also discussed.
基金supported by the Linyi University 2023 High-level Talents(PhD)Research Start-up Fund(Natural Sciences)(Nos.Z6124014 and Z6124015)the College Students’Innovation and Entrepreneurship Training Program(No.X202310452291)+1 种基金the Key Research and Development Project for the Highlevel Technological Talent of Lvlang City(Nos.2023GXYF09 and 2022RC15)Scientific Research Start-up Funds of Lyuliang University.
文摘Flexible electronic devices with mechanical properties like the soft tissues of human organs have great potential for the next generation of wearable and implantable electronic devices.Self-healing hydrogel composites typically have high tensile strength,high electrical conductivity and damage repair properties and have wide applications in flexible electronics,such as human-computer interaction,health detection and soft robots.Various self-healing hydrogel composites have been developed to produce new stretchable conductive materials with satisfactory mechanical and selfhealing properties.This paper presents the fabrication of self-healing hydrogel composites and their application in flexible electronic devices.Firstly,the repair mechanism of physically cross-linked and chemically cross-linked self-healing hydrogel composites is presented.Secondly,self-healing double network hydrogels,self-healing nanocomposite hydrogels and double crosslinked self-healing hydrogel composites and their applications in flexible sensors,energy harvesting devices,energy storage devices and optical devices are presented and discussed.Finally,the challenges and prospects of self-healing hydrogel composites in flexible electronic devices in the future are presented.
基金Supported by Trans-Century Training Program Foundation for the Talents of Natural Science by the State Education Commission, the Key Project of the Ministry of Education of China under Grant No 105041, the National Natural Science Foundation of China under Grant Nos 90401006, 10434030 and 90301004, and the National Key Basic Research and Development Programme of China under Grant No 2003CB314707.
文摘Photoconductive properties of photodiodes based on composites of CuS nanoparticles and Poly[2-methoxy,5- (2'-ethylhexyloxy)-p-phenylenevlnylene] (MEH-PPV) are investigated. By comparing composite devices with different MEH-PPV:CuS weight ratios of l:l (D2-1), 1:1.25 (D2-2), 1:2.5 (132-3) and 1:5 (D2-4), it is found that the device D2 3 exhibited the best performance: the short-circuit current density of 17μA/cm^2 with the light intensity of 16.7mW/cm^2, the highest open-circuit voltage of 0,83 V, and the photosensitivity of 132 at reverse bias of - 1 V. The photosensitivity is improved by a factor of 5 compared with the undoped MEH-PPV device.
文摘A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly( ethylene terephthalate ) (PET) and polyethylene (PE) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable calcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin-apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite coruposite coating.
基金financially supported by the National Excellent Young Scientists Fund(NO.51525503)
文摘Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold.
文摘With an ever increasing energy demand and environmental issues, many state-of-the-art nanostructured electrode materials have been developed for energy storage devices and they include batteries, supercapacitors and fuel cells. Among these electrode materials, L-TMD (layered transition metal dichalcogenide) nanosheets (especially, S (sulfur) and Se (selenium) based dichaleogenides) have received a lot of attention due to their intriguing layered structure for enhanced electrochemical properties. L-TMD composites have recently been investigated not only as a main charge storage specie but also, as a substrate to hold the active specie. This review highlights the recent advancements in L-TMD composites with 0D (0-dimensional), 1 D, 2D, 3D and various forms of carbon structures and their potential applications in LIB (lithium ion battery) and SIB (sodium ion battery).
文摘The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkable reduction of bending stresses in the arches and tie beams. The present paper describes the main features of the design and construction of several long-span arch bridges of this typology in Spain: the three pedestrian footbridges for the Madrid cycling ring track, with spans of 52, 60 and 80 m, the Bridge over River Deba in Guipuzcoa with a span of 110 m and Palma del Rio Bridge over River Guadalquivir in Cordoba, 130 m long. In all cases, two inclined arches linked at the crown were implemented, a very effective disposition to reduce the out-of-plane buckling length. The multiple crossings of the hanger system, consisting of prestressed bars in the case of Deba Bridge and the footbridges, and locked coil cables for Palma del Rio Bridge, were dealt with by means of crossing devices which led to a technically satisfactory solution with minimal visual impact. An innovative approach to bowstring arches was introduced in Valdebebas Bridge over M-12 motorway in Madrid, next to the new T-4 Terminal of Barajas Airport, with a span of 162 m, where the hangers are replaced by a structural steel mesh -diagrid- which acts as the web of a simply-supported beam whose compression head is the arch and the tie beam is the deck.
文摘Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.
文摘Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in futureFlat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to theircommercialization. Here we present a brief summary of our studies on both extrinsic and intrinsic causes for the fastdegradation of OLEDs. In particular, we focus on the origin of the dark spots by 'rebuilding' cathodes, which confirms thatthe growth of dark spots occurs primarily due to cathode delamination. In the meantime, we recapture the findings from thesearch for suitable OLED packaging materials, in particular polymer composites, which provide both heat dissipation andmoisture resistance, in addition to electrical insulation.
文摘The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.