The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basi...The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basic equation of the structure is derived from a minimum principle in dynamics of elasto-plastic continua at finite deformation, and the flow theory of plasticity is employed. The liquid is incompressible and the gas is compressed adiabatically. A number of numerical results are presented and the characteristics of the buckling behavior under fluid-solid impact are illustrated.展开更多
In this paper, a method for the design optimization of elasto-plastic truss structures is proposed based on parametric variational principles (PVPs). The optimization aims to find the minimum weight/volume solution ...In this paper, a method for the design optimization of elasto-plastic truss structures is proposed based on parametric variational principles (PVPs). The optimization aims to find the minimum weight/volume solution under the constraints of allowable node displacements. The design optimization is a formulation of mathematical programming with equilibrium constraints (MPECs). To overcome the numerical difficulties of the complementary constraints in optimization, an iteration process, comprising a quadratic programming (QP) and an updating process, is employed as the optimization method. Furthermore, the elasto-plastic buckling of truss mem- bers is considered as a constraint in design optimization. A combinational optimization strategy is proposed for the displacement constraints and the buckling constraint, which comprises the method mentioned above and an optimal criterion. Three numerical examples are presented to show the validity of the methods proposed.展开更多
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
The flow rule of Prandtl-Reuss was adopted and incremental elasto-plastic finite-element analysis formulation of Coulomb’s friction law combining the finite deformation theory was established, and Lagrangian formulat...The flow rule of Prandtl-Reuss was adopted and incremental elasto-plastic finite-element analysis formulation of Coulomb’s friction law combining the finite deformation theory was established, and Lagrangian formulation for simulating the squaring process of circular tube was updated. Incremental Coulomb’s friction law was used in the global stiffness matrix to solve the sliding-sticking state of friction at the boundary contact interface. During the squaring process, the linear factor rmin was adopted to solve the non-linear boundary problems of changing node contact and separation, elasto-plastic transient situation in an element and the non-linear constitutive behavior of material so as to make each reasonable increment of the punch meet the demand of calculation for linear increment. The squaring process of circular tube, load distribution and final shape of work piece after unloading were simulated by this mode and compared with research data. It is known that the circular tube with higher geometrical ratio (R/t) could be pressed into symmetric square tube without collapse. This result can provide reference for the analysis of this process and evaluation and improvement of product defects.展开更多
The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the roc...The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the rock properties on its deformation and failure of rock mass, the generalized nonlinear unified strength theory and elasto-plastic mechanics are used to deduce analytic solution of the radius and stress of tunnel plastic zone and the periphery displacement of tunnel under uniform ground stress field. The results show that: intermediate principal stress coefficient b has significant effect on the plastic range,the magnitude of stress and surrounding rock pressure. Then, the results are compared with the unified strength criterion solution and Mohr–Coulomb criterion solution, and concluded that the generalized nonlinear unified strength criterion is more applicable to elasto-plastic analysis of underground tunnel surrounding rock.展开更多
A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct fea...A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured,whereas the discontinuity of the velocity vector at the discrete time levels still remains.The computational cost is then obviously reduced, particularly,for material non-linear problems.Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed.Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.展开更多
The non-linear constitutive model suggested by the authors and the Alonso's elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of unsaturated soil prop...The non-linear constitutive model suggested by the authors and the Alonso's elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of unsaturated soil proposed by CHEN Zheng-han, and the non-linear and the elasto-plasticity consolidation models of unsaturated soil are obtained. Programs related to the two consolidation models are designed, and a 2-D consolidation problem of unsaturated sail is solved using the programs, the consolidation process and the development of plastic;one under multi-grade bad are studied. The above research develops the consolidation theory of unsaturated soil to a new level.展开更多
Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed...Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.展开更多
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the d...Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.展开更多
A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed ...A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.展开更多
In the paper. a visco-elasto plastic constitutive model and a method for determining model parameters for soft clay are presented. In this model total strain of soft clay is assumed to be divided into three parts: ins...In the paper. a visco-elasto plastic constitutive model and a method for determining model parameters for soft clay are presented. In this model total strain of soft clay is assumed to be divided into three parts: instantaneous elastic, visco-elastic and visco-plastic. The characteristics of instantaneous and visco-elastic deformation of soft clay are simulated by Merchant's model, the plastic is by a model with two yield surfaces. And related constitutive equation is conducted. A number of stress-controlled triaxial tests are performed to calculated the model parameters. The visco-elasto-plastic model is used for analysis of the displacement of an embankment on soft ground by use of three-dimensional finite element method. The predicted settlements agree well with the measured data. It is indicated that the viscous characteristics should be taken into account in deformation analysis for soft clay.展开更多
An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the in...An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.展开更多
According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would oc...According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would occur in the slope. When q is smaller than the critical load, q(p), the slope is in the elastic state. If q equals q(p), the slope is in the critical state, and the plastic deformation would occur along the critical angle. With the increase of q, the plastic zone would extend, and the slope is in the elasto-plastic State. If q equals limit load, the slope is in the limit equilibrium state. The slope may be divided into three zones. Some charts of the critical angle, the critical and limit load coefficients are presented in this paper.展开更多
Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in diffe...Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in different fields.In allusion to this,an elasto-plastic constitutive model based on clustering radial basis function neural network(BC-RBFNN) was proposed for moderate sandy clay according to its properties.Firstly,knowledge base was established on triaxial compression testing data;then the model was trained,learned and emulated using knowledge base;finally,predicting results of the BC-RBFNN model were compared and analyzed with those of other intelligent model.The results show that the BC-RBFNN model can alter the training and learning velocity and improve the predicting precision,which provides possibility for engineering practice on demanding high precision.展开更多
This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fractu...This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill's yield criterion and the Rankine's yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications.展开更多
A thermal elasto-plastic asperity contact model is investigated, which takes into account the steady-state heat transfer and the asperity distortion due to thermal elasto-plastic deformations. A hard coating and a sof...A thermal elasto-plastic asperity contact model is investigated, which takes into account the steady-state heat transfer and the asperity distortion due to thermal elasto-plastic deformations. A hard coating and a soft coating are applied to study the correlations between contact area and contact pressure, average gap and contact pressure, coating thickness and contours of the contact stress distribution, etc. The effects of material properties, coating thickness, frictional coefficient, and the heat input combinations on the stress distribution are investigated and discussed. The frictional heat input increases the maximum value of yon Mises stress. Finally, the appropriate thickness of the hard coating is also discussed. To protect the substrate, one can choose hard coating and the thickness of that is suggested that can be hc=70 Rm.展开更多
Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation(ANCF). The int...Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation(ANCF). The internal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation.A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient contact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the proposed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.展开更多
An elasto-visco-plastic constitutive model incorporating the craze damage behavior was developed for the polypropylene(PP), by using the plastic failure model applied for the concrete, to capture the craze yielding an...An elasto-visco-plastic constitutive model incorporating the craze damage behavior was developed for the polypropylene(PP), by using the plastic failure model applied for the concrete, to capture the craze yielding and stress-whitening phenomena. In addition, the developed constitutive model was implemented into finite element codes in Abaqus to simulate the tensile deformation. The standard uniaxial tensile tests were carried out. The stress-strain curves from the uniaxial tensile tests show that the stress keeps decreasing after yielding and the yield stress rises with the increasing of the strain rate. It is worth noting that the craze damage is more visible with higher strain rate. The stress-whitening can be seen clearly around the fracture. The uniaxial tensile tests using specially designed specimen with circular holes weakening were performed for the validation of the developed model. The simulation results of the tensile deformation of the hole-weakened specimen suggest that the stress-whitening could be attributed to the equivalent visco-plastic strain. By comparing between the simulation analysis and the experimental results, the proposed model can describe the stress whitening phenomenon with good accuracy.展开更多
Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionles...Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.展开更多
In the present work a model based on the Biot theory for simulating coupled hydrodynamic behavior mi saturated porous media is utilized with integration of the inertial coupling effect between the solid-fluid phases o...In the present work a model based on the Biot theory for simulating coupled hydrodynamic behavior mi saturated porous media is utilized with integration of the inertial coupling effect between the solid-fluid phases of the media into the model. The non-associated Drucker-Prager criterion to describe nonlinear constitutive behavior of pressure dependent elasto-plasticity for the media is particularly considered. With no consideration of compressibility of solid grains and the pore fluid, the discontinuity and instability of the wave propagation in saturated porous media axe analyzed for the plane strain problems in detail. The critical conditions of stationary discontinuity and flutter instability in the wave propagation are given. The results and conclusions obtained by the present work will provide some bases or clues for overcoming the difficulties in numerical modeling of wave propagation in the media subjected to dynamic loading.展开更多
文摘The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basic equation of the structure is derived from a minimum principle in dynamics of elasto-plastic continua at finite deformation, and the flow theory of plasticity is employed. The liquid is incompressible and the gas is compressed adiabatically. A number of numerical results are presented and the characteristics of the buckling behavior under fluid-solid impact are illustrated.
基金Project supported by the National Natural Sciences Foundation of China (Nos. 10372084 and 10572119)the Program for New Century Excellent Talents in University (No. NCET-04-0958)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment and the Doctorate Foundation of Northwestern Polytechnical University.
文摘In this paper, a method for the design optimization of elasto-plastic truss structures is proposed based on parametric variational principles (PVPs). The optimization aims to find the minimum weight/volume solution under the constraints of allowable node displacements. The design optimization is a formulation of mathematical programming with equilibrium constraints (MPECs). To overcome the numerical difficulties of the complementary constraints in optimization, an iteration process, comprising a quadratic programming (QP) and an updating process, is employed as the optimization method. Furthermore, the elasto-plastic buckling of truss mem- bers is considered as a constraint in design optimization. A combinational optimization strategy is proposed for the displacement constraints and the buckling constraint, which comprises the method mentioned above and an optimal criterion. Three numerical examples are presented to show the validity of the methods proposed.
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
基金Project(95-2221-E-129-001) supported by the National Science Council, Taiwan, China
文摘The flow rule of Prandtl-Reuss was adopted and incremental elasto-plastic finite-element analysis formulation of Coulomb’s friction law combining the finite deformation theory was established, and Lagrangian formulation for simulating the squaring process of circular tube was updated. Incremental Coulomb’s friction law was used in the global stiffness matrix to solve the sliding-sticking state of friction at the boundary contact interface. During the squaring process, the linear factor rmin was adopted to solve the non-linear boundary problems of changing node contact and separation, elasto-plastic transient situation in an element and the non-linear constitutive behavior of material so as to make each reasonable increment of the punch meet the demand of calculation for linear increment. The squaring process of circular tube, load distribution and final shape of work piece after unloading were simulated by this mode and compared with research data. It is known that the circular tube with higher geometrical ratio (R/t) could be pressed into symmetric square tube without collapse. This result can provide reference for the analysis of this process and evaluation and improvement of product defects.
文摘The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the rock properties on its deformation and failure of rock mass, the generalized nonlinear unified strength theory and elasto-plastic mechanics are used to deduce analytic solution of the radius and stress of tunnel plastic zone and the periphery displacement of tunnel under uniform ground stress field. The results show that: intermediate principal stress coefficient b has significant effect on the plastic range,the magnitude of stress and surrounding rock pressure. Then, the results are compared with the unified strength criterion solution and Mohr–Coulomb criterion solution, and concluded that the generalized nonlinear unified strength criterion is more applicable to elasto-plastic analysis of underground tunnel surrounding rock.
基金The project supported by the National Natural Science Foundation of China(19832010,50278012,10272027)the National Key Basic Research and Development Program(973 Program,2002CB412709)
文摘A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured,whereas the discontinuity of the velocity vector at the discrete time levels still remains.The computational cost is then obviously reduced, particularly,for material non-linear problems.Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed.Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.
文摘The non-linear constitutive model suggested by the authors and the Alonso's elasto-plasticity model of unsaturated soil modified by the authors are introduced into the consolidation theory of unsaturated soil proposed by CHEN Zheng-han, and the non-linear and the elasto-plasticity consolidation models of unsaturated soil are obtained. Programs related to the two consolidation models are designed, and a 2-D consolidation problem of unsaturated sail is solved using the programs, the consolidation process and the development of plastic;one under multi-grade bad are studied. The above research develops the consolidation theory of unsaturated soil to a new level.
基金The Project Supported by National Natural Science Foundation of China
文摘Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.
基金the National Natural Science Foundation of China (50479058, 10672032)
文摘Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.
基金Project supported by the National Natural Science Foundation of China(No.10172052).
文摘A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.
基金This work was financially supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education.P.R.China
文摘In the paper. a visco-elasto plastic constitutive model and a method for determining model parameters for soft clay are presented. In this model total strain of soft clay is assumed to be divided into three parts: instantaneous elastic, visco-elastic and visco-plastic. The characteristics of instantaneous and visco-elastic deformation of soft clay are simulated by Merchant's model, the plastic is by a model with two yield surfaces. And related constitutive equation is conducted. A number of stress-controlled triaxial tests are performed to calculated the model parameters. The visco-elasto-plastic model is used for analysis of the displacement of an embankment on soft ground by use of three-dimensional finite element method. The predicted settlements agree well with the measured data. It is indicated that the viscous characteristics should be taken into account in deformation analysis for soft clay.
文摘An in-depth analysis of propagation characteristics ofelasto-plastic combined stress waves in circular thin-walled tubeshas been made. In obtaining the simple-wave solution, however, mostresearches have ignored the influence of the circumferential stressrelated to the radial inertial ef- fect in the tubes. In this paperthe incremental elasto-plastic constitutive relations which areconve- nient for dynamic numerical analysis are adopted, and thefinite-difference method is used to study the evolution adpropagation of elasto-plastic combined stress waves in a thin-walledtube with the radial inertial effect of the tube considered. Thecalculation results are compared with those obtained when the radialinertial effect is not considered. The calculation results show thatthe radial inertial effect of a tube has a fairly great influence onthe propagation of elasto-plastic combined stress waves.
文摘According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would occur in the slope. When q is smaller than the critical load, q(p), the slope is in the elastic state. If q equals q(p), the slope is in the critical state, and the plastic deformation would occur along the critical angle. With the increase of q, the plastic zone would extend, and the slope is in the elasto-plastic State. If q equals limit load, the slope is in the limit equilibrium state. The slope may be divided into three zones. Some charts of the critical angle, the critical and limit load coefficients are presented in this paper.
基金Project(07031B) supported by the Scientific Research Fund of Central South University of Forestry and TechnologyProject(06C843) supported by the Scientific Research Fund of Hunan Provincial Education Department
文摘Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in different fields.In allusion to this,an elasto-plastic constitutive model based on clustering radial basis function neural network(BC-RBFNN) was proposed for moderate sandy clay according to its properties.Firstly,knowledge base was established on triaxial compression testing data;then the model was trained,learned and emulated using knowledge base;finally,predicting results of the BC-RBFNN model were compared and analyzed with those of other intelligent model.The results show that the BC-RBFNN model can alter the training and learning velocity and improve the predicting precision,which provides possibility for engineering practice on demanding high precision.
基金Sponsored by Changjiang Scholars Program of China (Grant No.2009-37)PhD Programs Foundation of Ministry of Education of China (Grant No.20092302110046)Natural Science Foundation of Heilongjiang Province (Grant No.E200916)
文摘This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill's yield criterion and the Rankine's yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications.
基金National Natural Science Foundation of China (No.50475146)Specialized Research Fund for the Doctoral Program of Higher Education of Ministry of Education,China (No.20030699035)+1 种基金Natural Science Foundation of Shaanxi Province,China (No.2004E_225,No.2005E_226)Northwestern Polytechnical University Foundation for Fundamental Research (NPU-FFR-20060500W018101)
文摘A thermal elasto-plastic asperity contact model is investigated, which takes into account the steady-state heat transfer and the asperity distortion due to thermal elasto-plastic deformations. A hard coating and a soft coating are applied to study the correlations between contact area and contact pressure, average gap and contact pressure, coating thickness and contours of the contact stress distribution, etc. The effects of material properties, coating thickness, frictional coefficient, and the heat input combinations on the stress distribution are investigated and discussed. The frictional heat input increases the maximum value of yon Mises stress. Finally, the appropriate thickness of the hard coating is also discussed. To protect the substrate, one can choose hard coating and the thickness of that is suggested that can be hc=70 Rm.
基金supported in part by the National Natural Science Foundation of China (Grants 11290151 and 11221202)supported in part by the Beijing Higher Education Young Elite Teacher Project (Grant YETP1201)
文摘Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation(ANCF). The internal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation.A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient contact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the proposed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.
基金Project(51275185)supported by the National Natural Science Foundation of China
文摘An elasto-visco-plastic constitutive model incorporating the craze damage behavior was developed for the polypropylene(PP), by using the plastic failure model applied for the concrete, to capture the craze yielding and stress-whitening phenomena. In addition, the developed constitutive model was implemented into finite element codes in Abaqus to simulate the tensile deformation. The standard uniaxial tensile tests were carried out. The stress-strain curves from the uniaxial tensile tests show that the stress keeps decreasing after yielding and the yield stress rises with the increasing of the strain rate. It is worth noting that the craze damage is more visible with higher strain rate. The stress-whitening can be seen clearly around the fracture. The uniaxial tensile tests using specially designed specimen with circular holes weakening were performed for the validation of the developed model. The simulation results of the tensile deformation of the hole-weakened specimen suggest that the stress-whitening could be attributed to the equivalent visco-plastic strain. By comparing between the simulation analysis and the experimental results, the proposed model can describe the stress whitening phenomenon with good accuracy.
基金Project supported by the National Natural Science Foundation of China (No.10572049)
文摘Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.
基金The project supported by the National Natural Science Foundation of China (19832010)
文摘In the present work a model based on the Biot theory for simulating coupled hydrodynamic behavior mi saturated porous media is utilized with integration of the inertial coupling effect between the solid-fluid phases of the media into the model. The non-associated Drucker-Prager criterion to describe nonlinear constitutive behavior of pressure dependent elasto-plasticity for the media is particularly considered. With no consideration of compressibility of solid grains and the pore fluid, the discontinuity and instability of the wave propagation in saturated porous media axe analyzed for the plane strain problems in detail. The critical conditions of stationary discontinuity and flutter instability in the wave propagation are given. The results and conclusions obtained by the present work will provide some bases or clues for overcoming the difficulties in numerical modeling of wave propagation in the media subjected to dynamic loading.