A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct fea...A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured,whereas the discontinuity of the velocity vector at the discrete time levels still remains.The computational cost is then obviously reduced, particularly,for material non-linear problems.Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed.Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.展开更多
This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on r...This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.展开更多
The new generation of the times is the latest requirement for young people in the new era,and it is the latest training goal for young people put forward by the Party and the country in the face of the second centenni...The new generation of the times is the latest requirement for young people in the new era,and it is the latest training goal for young people put forward by the Party and the country in the face of the second centennial goal.At the 19th National Congress,it was put forward by the country that the concept of“new generation of the times”for the first time,indicating the training direction and theoretical guidance for the new generation of the times.The new age requires young people to have firm ideals and beliefs,excellent skills,and a great spirit of responsibility.The proposition of cultivating a new generation of the times is a deep exploration and summary of Marx’s theory of“all-round human development,”Lenin’s youth view and the education view of excellent traditional Chinese culture,and the proposition needs to strengthen the leadership of the Party,give play to the leading role of socialist core values,and the youth themselves should actively act to realize the transformation of theoretical and practical results.展开更多
A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modelin...A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modeling is performed and the environment is divided into a set of grids or nodes. Then two time-based features of time interval and time cost are presented. The time intervals for each grid are built, during each interval the condition of the grid remains stable, and a time cost of passing through the grid is defined and assigned to each interval. Furthermore, the weight is introduced for taking both time and distance into consideration, and thus a sequence of multiscale paths with total time cost can be achieved. Experimental results show that the proposed method can handle the complex dynamic environment, obtain the global time optimal path and has the potential to be applied to the autonomous robot navigation and traffic environment.展开更多
The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced ...The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced to compute reflection coefficient in a very short time interval. A 5 rays path loss calculation method, which is satisfactory accurate, is developed. 5 typical environments are involved to analyze and generalize the common path loss characteristics in vacancy indoor environment. The simulation result shows that the path loss can be characterized as 3 zones with different path loss exponent as distance between transmitter and receiver increasing.展开更多
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment...This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.展开更多
In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function...In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function . For each node , a time window ?within which the node may be visited and ?, is non-negative of the service and leaving time of the node. A source node s, a destination node d and a departure time?t0, the time-dependent shortest path problem with time windows asks to find an s, d-path that leaves a source node s at a departure time t0;and minimizes the total arrival time at a destination node d. This formulation generalizes the classical shortest path problem in which ce are constants. Our algorithm of the time windows gave the generalization of the ALT algorithm and A* algorithm for the classical problem according to Goldberg and Harrelson [1], Dreyfus [2] and Hart et al. [3].展开更多
For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning...For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning. There are still lack of authoritative indicator and method for the cooperating path planning. The calculation of the voyage time is a difficult problem in the time-varying ocean, for the existing methods of the cooperating path planning, the computation time will increase exponentially as the autonomous underwater vehicle(AUV) counts increase, rendering them unfeasible. A collaborative path planning method is presehted for multi-AUV under the influence of time-varying ocean currents based on the dynamic programming algorithm. Each AUV cooperates with the one who has the longest estimated time of sailing, enabling the arrays of AUV to get their common goal in the shortest time with minimum timedifference. At the same time, they could avoid the obstacles along the way to the target. Simulation results show that the proposed method has a promising applicability.展开更多
Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed,...Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed, for example Dijkstra’s algorithm, Floyd-Warshall, Bellman-Ford, A* et al. However, practical travel time is not a constant value but a stochastic value. How to take full use of the stochastic character to find the shortest path is a significant problem. In this paper, GPS floating car is used to detect road section’s travel time. The probability distribution of travel time is estimated according to Bayes estimation method. The combined probability distribution of a feasible route is calculated according to probability operation. The objective function is to find the route that has the biggest probability to arrive for desired time thresholds. Improved Genetic Algorithm is used to calculate the optimal path. The efficiency of the proposed method is illustrated with a practical example.展开更多
An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmltico...An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmlticonfiguration tirne-dependent Hartree theory for imag- inary time propagation and an importance sampling procedure for calculating the quantum mechanical trace. The method is applied to the spin-boson Harniltonian, which leads to ac- curate results in agreement with those produced by the rnulti-electronic-state path integral molecular dynamics method.展开更多
This paper introduces the theory of utility maximization ofNested Logit model,the establishment of selective limbs and its probability expressions;the basic calculation formula of time value. Investigate the travel ro...This paper introduces the theory of utility maximization ofNested Logit model,the establishment of selective limbs and its probability expressions;the basic calculation formula of time value. Investigate the travel routes and travel mode choices of residents from Suzhou to Shanghai,consider different impact variables in the survey,and divide their travel lines into two travel days on weekdays due to commuting to Shanghai, and free travel to Shanghai on weekdays.The data of the survey were analyzed and analyzed,and the parameters of the established Nested Logit model were calibrated by ST AT A software.The selection model and time value of the travel route and travel mode of residents under different scenarios and different influence variables were obtained Analyze.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.展开更多
It is well known that the sufficient family of time-optimal paths for both Dubins' as well as Reeds-Shepp' s car models consist of the concatenation of circular arcs with maximum curvature and straight line se...It is well known that the sufficient family of time-optimal paths for both Dubins' as well as Reeds-Shepp' s car models consist of the concatenation of circular arcs with maximum curvature and straight line segments, all tangentially connected. These time-optimal solutions suffer from some drawbacks. Their discontinuous curvature profile, together with the wear and impairment on the control equipment that the bang-bang solutions induce, calls for ' smoother' and more supple reference paths to follow. Avoiding the bang-bang solutions also raises the robustness with respect to any possible uncertainties. In this paper, our main tool for generating these “nearly time-optimal” , but nevertheless continuous-curvature paths, is to use the Pontryagin Maximum Principle (PMP) and make an appropriate and cunning choice of the Lagrangian function. Despite some rewarding simulation results, this concept turns out to be numerically divergent at some instances. Upon a more careful investigation, it can be concluded that the problem at hand is nearly singular. This is seen by applying the PMP to Dubins car and studying the corresponding two point boundary value problem, which turn out to be singular. Realizing this, one is able to contradict the widespread belief that all the information about the motion of a mobile platform lies in the initial values of the auxiliary variables associated with the PMP. Keywords Time-optimal paths - Motion planning - Optimal control - Pontryagin maximum principle - UGV展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.展开更多
On November 8, 2022, the symposium on “Deeply Studying and Implementing the Spirit of the 20thCPC National Congress and Adhering to the Chinese Path of Human Rights Development” was held by the China Society for Hum...On November 8, 2022, the symposium on “Deeply Studying and Implementing the Spirit of the 20thCPC National Congress and Adhering to the Chinese Path of Human Rights Development” was held by the China Society for Human Rights Studies in Beijing. Focusing on “the leadership of the CPC and human rights development”, “adapting Marxism to the Chinese context and the needs of our times and human rights theories in contemporary China”, “the Chinese path to modernization and the new form of human rights civilization”, “Chinese human rights solutions and global human rights governance”, “making a better China’s story of advancing human rights and constructing human rights discourse system”, and other topics, the participants reached broad consensus after discussion, and the symposium achieved fruitful results.展开更多
基金The project supported by the National Natural Science Foundation of China(19832010,50278012,10272027)the National Key Basic Research and Development Program(973 Program,2002CB412709)
文摘A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed.As compared with the existing discontinuous Galerkin finite element methods,the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured,whereas the discontinuity of the velocity vector at the discrete time levels still remains.The computational cost is then obviously reduced, particularly,for material non-linear problems.Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed.Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.
基金supported by Shanghai Artificial Intelligence Laboratory.
文摘This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Itôintegrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Lévy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional Ornstein-Uhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.
文摘The new generation of the times is the latest requirement for young people in the new era,and it is the latest training goal for young people put forward by the Party and the country in the face of the second centennial goal.At the 19th National Congress,it was put forward by the country that the concept of“new generation of the times”for the first time,indicating the training direction and theoretical guidance for the new generation of the times.The new age requires young people to have firm ideals and beliefs,excellent skills,and a great spirit of responsibility.The proposition of cultivating a new generation of the times is a deep exploration and summary of Marx’s theory of“all-round human development,”Lenin’s youth view and the education view of excellent traditional Chinese culture,and the proposition needs to strengthen the leadership of the Party,give play to the leading role of socialist core values,and the youth themselves should actively act to realize the transformation of theoretical and practical results.
基金Supported by the National Natural Science Foundation of China(No.61100143,No.61370128)the Program for New Century Excellent Talents in University of the Ministry of Education of China(NCET-13-0659)Beijing Higher Education Young Elite Teacher Project(YETP0583)
文摘A weighted time-based global hierarchical path planning method is proposed to obtain the global optimal path from the starting point to the destination with time optimal control. First, the grid-or graph-based modeling is performed and the environment is divided into a set of grids or nodes. Then two time-based features of time interval and time cost are presented. The time intervals for each grid are built, during each interval the condition of the grid remains stable, and a time cost of passing through the grid is defined and assigned to each interval. Furthermore, the weight is introduced for taking both time and distance into consideration, and thus a sequence of multiscale paths with total time cost can be achieved. Experimental results show that the proposed method can handle the complex dynamic environment, obtain the global time optimal path and has the potential to be applied to the autonomous robot navigation and traffic environment.
基金This project was supported by the key programof the Nationed Natural Science Foundation of China (60432040)
文摘The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced to compute reflection coefficient in a very short time interval. A 5 rays path loss calculation method, which is satisfactory accurate, is developed. 5 typical environments are involved to analyze and generalize the common path loss characteristics in vacancy indoor environment. The simulation result shows that the path loss can be characterized as 3 zones with different path loss exponent as distance between transmitter and receiver increasing.
基金supported by the Ministry of Science and Technology of Thailand
文摘This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.
文摘In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function . For each node , a time window ?within which the node may be visited and ?, is non-negative of the service and leaving time of the node. A source node s, a destination node d and a departure time?t0, the time-dependent shortest path problem with time windows asks to find an s, d-path that leaves a source node s at a departure time t0;and minimizes the total arrival time at a destination node d. This formulation generalizes the classical shortest path problem in which ce are constants. Our algorithm of the time windows gave the generalization of the ALT algorithm and A* algorithm for the classical problem according to Goldberg and Harrelson [1], Dreyfus [2] and Hart et al. [3].
基金supported by the National Natural Science Foundation of China(5110917951179156+2 种基金5137917661473233)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ8330)
文摘For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning. There are still lack of authoritative indicator and method for the cooperating path planning. The calculation of the voyage time is a difficult problem in the time-varying ocean, for the existing methods of the cooperating path planning, the computation time will increase exponentially as the autonomous underwater vehicle(AUV) counts increase, rendering them unfeasible. A collaborative path planning method is presehted for multi-AUV under the influence of time-varying ocean currents based on the dynamic programming algorithm. Each AUV cooperates with the one who has the longest estimated time of sailing, enabling the arrays of AUV to get their common goal in the shortest time with minimum timedifference. At the same time, they could avoid the obstacles along the way to the target. Simulation results show that the proposed method has a promising applicability.
文摘Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed, for example Dijkstra’s algorithm, Floyd-Warshall, Bellman-Ford, A* et al. However, practical travel time is not a constant value but a stochastic value. How to take full use of the stochastic character to find the shortest path is a significant problem. In this paper, GPS floating car is used to detect road section’s travel time. The probability distribution of travel time is estimated according to Bayes estimation method. The combined probability distribution of a feasible route is calculated according to probability operation. The objective function is to find the route that has the biggest probability to arrive for desired time thresholds. Improved Genetic Algorithm is used to calculate the optimal path. The efficiency of the proposed method is illustrated with a practical example.
基金supported by the U.S.National Science Foundation CHE-1500285used resources from the National Energy Research Scientific Computing Center,which is supported by the Office of Science of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231+2 种基金supported by the Ministry of Science and Technology of China(No.2017YFA0204901 and No.2016YFC0202803)the National Natural Science Foundation of China(No.21373018 and No.21573007)the Recruitment Program of Global Experts,and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase) under grant No.U1501501
文摘An efficient and accurate method for computing the equilibriurn reduced density matrix is presented for treating open quantum systems characterized by the systern-bath model. The method employs the rnultilayer nmlticonfiguration tirne-dependent Hartree theory for imag- inary time propagation and an importance sampling procedure for calculating the quantum mechanical trace. The method is applied to the spin-boson Harniltonian, which leads to ac- curate results in agreement with those produced by the rnulti-electronic-state path integral molecular dynamics method.
基金the National Natural Science Foundation of China (71601110)the National Research and Development Program of China (2017YFC0804900).
文摘This paper introduces the theory of utility maximization ofNested Logit model,the establishment of selective limbs and its probability expressions;the basic calculation formula of time value. Investigate the travel routes and travel mode choices of residents from Suzhou to Shanghai,consider different impact variables in the survey,and divide their travel lines into two travel days on weekdays due to commuting to Shanghai, and free travel to Shanghai on weekdays.The data of the survey were analyzed and analyzed,and the parameters of the established Nested Logit model were calibrated by ST AT A software.The selection model and time value of the travel route and travel mode of residents under different scenarios and different influence variables were obtained Analyze.
基金Foundation of the Robotics Laboratory, Chinese Academy of Sciences (No: RL200002)
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.
文摘It is well known that the sufficient family of time-optimal paths for both Dubins' as well as Reeds-Shepp' s car models consist of the concatenation of circular arcs with maximum curvature and straight line segments, all tangentially connected. These time-optimal solutions suffer from some drawbacks. Their discontinuous curvature profile, together with the wear and impairment on the control equipment that the bang-bang solutions induce, calls for ' smoother' and more supple reference paths to follow. Avoiding the bang-bang solutions also raises the robustness with respect to any possible uncertainties. In this paper, our main tool for generating these “nearly time-optimal” , but nevertheless continuous-curvature paths, is to use the Pontryagin Maximum Principle (PMP) and make an appropriate and cunning choice of the Lagrangian function. Despite some rewarding simulation results, this concept turns out to be numerically divergent at some instances. Upon a more careful investigation, it can be concluded that the problem at hand is nearly singular. This is seen by applying the PMP to Dubins car and studying the corresponding two point boundary value problem, which turn out to be singular. Realizing this, one is able to contradict the widespread belief that all the information about the motion of a mobile platform lies in the initial values of the auxiliary variables associated with the PMP. Keywords Time-optimal paths - Motion planning - Optimal control - Pontryagin maximum principle - UGV
基金FoundationoftheRoboticsLaboratoryChineseAcademyofSciences (No :RL2 0 0 0 0 2 )
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.
文摘On November 8, 2022, the symposium on “Deeply Studying and Implementing the Spirit of the 20thCPC National Congress and Adhering to the Chinese Path of Human Rights Development” was held by the China Society for Human Rights Studies in Beijing. Focusing on “the leadership of the CPC and human rights development”, “adapting Marxism to the Chinese context and the needs of our times and human rights theories in contemporary China”, “the Chinese path to modernization and the new form of human rights civilization”, “Chinese human rights solutions and global human rights governance”, “making a better China’s story of advancing human rights and constructing human rights discourse system”, and other topics, the participants reached broad consensus after discussion, and the symposium achieved fruitful results.