In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways fl...An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways flow of lubricant in the inlet region of the contact When the results are presented in suitable non dimensional groups,it is shown that more uniformly pressure and shape of the film distributing in axial direction is taken place under light loading As the increase of the load,the end closure is displayed and the oil pressure rises sharply at the ends The seal action formed by the end closure makes the film thickness a little And the minimum film thickness is transferred from the central to the ends and the value is reduced rapidly As the increase of the speed,the end closure becomes much serious The optimum crowning value obtained in EHL state is larger than the design value obtained in elastostatic contact state for the same working conditions In order to verify the correctness of theory,optical interferometry is applied to measure the oil film thickness between a logarithmic profiled roller and a glass plate under pure rolling conditions It is found the agreement between numerical solutions and experiments is very good.展开更多
This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized...This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.展开更多
The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg&...The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg's profiled cylindrical roller under the conditions of flooded state, moderate load and material parameter. It shows clearly the effects of crowning value on the variations of oil film shape and thickness. The agreement between numerical analysis and experiment results is very good. The results indicate there must be an optimum crowning value that will induce the thickest and most even oil film in EHL state for a given working condition, and this value is larger than the design value in dry contact state for the same working conditions.展开更多
Based on the couple-stress theory,the elastohydrodynamic lubrication(EHL)contact is analyzed with a consideration of the size effect.The lubricant between the contact surface of a homogeneous coated half-plane and a r...Based on the couple-stress theory,the elastohydrodynamic lubrication(EHL)contact is analyzed with a consideration of the size effect.The lubricant between the contact surface of a homogeneous coated half-plane and a rigid punch is supposed to be the non-Newtonian fluid.The density and viscosity of the lubricant are dependent on fluid pressure.Distributions of film thickness,in-plane stress,and fluid pressure are calculated by solving the nonlinear fluid-solid coupled equations with an iterative method.The effects of the punch radius,size parameter,coating thickness,slide/roll ratio,entraining velocity,resultant normal load,and stiffness ratio on lubricant film thickness,in-plane stress,and fluid pressure are investigated.The results demonstrate that fluid pressure and film thickness are obviously dependent on the size parameter,stiffness ratio,and coating thickness.展开更多
1 Putting forword the question and its calculating method The lubrication of involute spur gear transmission is the typical one of transient EHL line contact problem. It can't be described only with famous Dowson-...1 Putting forword the question and its calculating method The lubrication of involute spur gear transmission is the typical one of transient EHL line contact problem. It can't be described only with famous Dowson-Higginson equation, but it is a very complicated partial difference equation. So far, no any complete discussion has been seen at home and abroad, and it is a forward problem at this field in internation. So there is a number of deepgoing and much-needed work to do. It is correspondence with practical lubrication condition to explore the展开更多
Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short...Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short) is investigated. The results suggest that gearlubrication effects bear close relations to a dimensionless parameter D which is syntheticallydetermined by gearing rotational speed, load, material, dimension and lubricant viscosity. When D<=8, the gear fatigue life increases as the lubricant viscosity is increased; When D>8, however, thelife decreases with the viscosity addition, which is in marked contrast to the lubrication factorZ_L recommended by the International Standard for Computing Cylindrical Gear Strength. At the end, aset of formulae for calculating gear lubrication factors suitable for different working conditionsare advanced.展开更多
Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually...Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-Newtonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little difference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tangential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.展开更多
To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadra...To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network(ANN). Genetic algorithm(GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment(AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method(MCM).展开更多
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金This project is supported by National Natural Science Foundation of China (No.59475037).
文摘An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways flow of lubricant in the inlet region of the contact When the results are presented in suitable non dimensional groups,it is shown that more uniformly pressure and shape of the film distributing in axial direction is taken place under light loading As the increase of the load,the end closure is displayed and the oil pressure rises sharply at the ends The seal action formed by the end closure makes the film thickness a little And the minimum film thickness is transferred from the central to the ends and the value is reduced rapidly As the increase of the speed,the end closure becomes much serious The optimum crowning value obtained in EHL state is larger than the design value obtained in elastostatic contact state for the same working conditions In order to verify the correctness of theory,optical interferometry is applied to measure the oil film thickness between a logarithmic profiled roller and a glass plate under pure rolling conditions It is found the agreement between numerical solutions and experiments is very good.
基金financial support from the Indian National Science Academy,New Delhi,IndiaBiluru Gurubasava Mahaswamiji Institute of Technology for the encouragement and support。
文摘This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.
文摘The purpose of this paper is to present a comparison of numerical calculations and experiment results of optical interferometry in finite line contact for the elastohydrodynamic lubrication(EHL) problem of Lundberg's profiled cylindrical roller under the conditions of flooded state, moderate load and material parameter. It shows clearly the effects of crowning value on the variations of oil film shape and thickness. The agreement between numerical analysis and experiment results is very good. The results indicate there must be an optimum crowning value that will induce the thickest and most even oil film in EHL state for a given working condition, and this value is larger than the design value in dry contact state for the same working conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.11902217,11725207,12011530056)the Russian Foundation for Basic Research(No.20-58-53045-GFEN-a)。
文摘Based on the couple-stress theory,the elastohydrodynamic lubrication(EHL)contact is analyzed with a consideration of the size effect.The lubricant between the contact surface of a homogeneous coated half-plane and a rigid punch is supposed to be the non-Newtonian fluid.The density and viscosity of the lubricant are dependent on fluid pressure.Distributions of film thickness,in-plane stress,and fluid pressure are calculated by solving the nonlinear fluid-solid coupled equations with an iterative method.The effects of the punch radius,size parameter,coating thickness,slide/roll ratio,entraining velocity,resultant normal load,and stiffness ratio on lubricant film thickness,in-plane stress,and fluid pressure are investigated.The results demonstrate that fluid pressure and film thickness are obviously dependent on the size parameter,stiffness ratio,and coating thickness.
文摘1 Putting forword the question and its calculating method The lubrication of involute spur gear transmission is the typical one of transient EHL line contact problem. It can't be described only with famous Dowson-Higginson equation, but it is a very complicated partial difference equation. So far, no any complete discussion has been seen at home and abroad, and it is a forward problem at this field in internation. So there is a number of deepgoing and much-needed work to do. It is correspondence with practical lubrication condition to explore the
基金This project is supported by Provincial Natural Science Foundation of shanxi,China(No.20001047)
文摘Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short) is investigated. The results suggest that gearlubrication effects bear close relations to a dimensionless parameter D which is syntheticallydetermined by gearing rotational speed, load, material, dimension and lubricant viscosity. When D<=8, the gear fatigue life increases as the lubricant viscosity is increased; When D>8, however, thelife decreases with the viscosity addition, which is in marked contrast to the lubrication factorZ_L recommended by the International Standard for Computing Cylindrical Gear Strength. At the end, aset of formulae for calculating gear lubrication factors suitable for different working conditionsare advanced.
基金Supported by National Natural Science Foundation of China(Grant No.52075279)。
文摘Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-Newtonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little difference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tangential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.
基金Project(CX2014B060) supported by Hunan Provincial Innovation for Postgraduate,ChinaProject(8130208) supported by General Armament Pre-research Foundation
文摘To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network(ANN). Genetic algorithm(GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment(AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method(MCM).