期刊文献+
共找到7,331篇文章
< 1 2 250 >
每页显示 20 50 100
Extrusion 3D printing of carbon nanotube-assembled carbon aerogel nanocomposites with high electrical conductivity
1
作者 Lukai Wang Jing Men +4 位作者 Junzong Feng Yonggang Jiang Liangjun Li Yijie Hu Jian Feng 《Nano Materials Science》 EI CAS CSCD 2024年第3期312-319,共8页
Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shapi... Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing. 展开更多
关键词 Carbon aerogel Extrusion 3D printing Carbon nanotube electrical conductivity RHEOLOGY
下载PDF
Saturation Estimation with Complex Electrical Conductivity for Hydrate-Bearing Clayey Sediments:An Experimental Study
2
作者 XING Lanchang ZHANG Shuli +8 位作者 ZHANG Huanhuan WU Chenyutong WANG Bin LAO Liyun WEI Wei HAN Weifeng WEI Zhoutuo GE Xinmin DENG Shaogui 《Journal of Ocean University of China》 CAS CSCD 2024年第1期173-189,共17页
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S... Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively. 展开更多
关键词 gas hydrate complex electrical conductivity hydrate-bearing clayey sediment hydrate saturation Simandoux equation frequency dispersion Cole-Cole formula
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation 被引量:1
3
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride Thermal conductivity electrical insulation
下载PDF
GLOBAL UNIQUE SOLUTIONS FOR THE INCOMPRESSIBLE MHD EQUATIONS WITH VARIABLE DENSITY AND ELECTRICAL CONDUCTIVITY
4
作者 Xueli KE 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1747-1765,共19页
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co... We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution. 展开更多
关键词 inhomogeneous MHD equations electrical conductivity global unique solutions
下载PDF
Fabrication of Graphene/Cu Composite by Chemical Vapor Deposition and Effects of Graphene Layers on Resultant Electrical Conductivity
5
作者 Xinyue Liu Yaling Huang +2 位作者 Yuyao Li Jie Liu Quanfang Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期16-25,共10页
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro... Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil. 展开更多
关键词 chemical vapor deposition(CVD) Gr/Cu Gr/Cu/Gr graphene layers graphene volume fraction electrical conductivity
下载PDF
Ultrafast Laser-Induced Excellent Thermoelectric Performance of PEDOT:PSS Films
6
作者 Xuewen Wang Yuzhe Feng +6 位作者 Kaili Sun Nianyao Chai Bo Mai Sheng Li Xiangyu Chen Wenyu Zhao Qingjie Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期425-431,共7页
Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising f... Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices. 展开更多
关键词 electrical conductivity PEDOT:PSS thermoelectric film ultrafast laser irradiation
下载PDF
Mechanical and Electrical Properties of Some Sn-Zn Based Lead-Free Quinary Alloys
7
作者 Shihab Uddin Md. Abdul Gafur +1 位作者 Suraya Sabrin Soshi Mohammad Obaidur Rahman 《Materials Sciences and Applications》 2024年第7期213-227,共15页
Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ... Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy. 展开更多
关键词 Lead-Free Solder Strain Rate Ultimate Tensile Strength DUCTILITY electrical conductivity
下载PDF
Electrical conductivity of NaF-AlF_3-CaF_2-Al_2O_3-ZrO_2 molten salts 被引量:2
8
作者 包莫日根高娃 王兆文 +3 位作者 高炳亮 石忠宁 胡宪伟 于江玉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3788-3792,共5页
The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt sy... The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis. 展开更多
关键词 ZRO2 molten salt electrolysis electrical conductivity NAF ALF3 Al-Zr alloy
下载PDF
Machine Learning Mapping of Soil Apparent Electrical Conductivity on a Research Farm in Mississippi
9
作者 Reginald S. Fletcher 《Agricultural Sciences》 2023年第7期915-924,共10页
Open-source and free tools are readily available to the public to process data and assist producers in making management decisions related to agricultural landscapes. On-the-go soil sensors are being used as a proxy t... Open-source and free tools are readily available to the public to process data and assist producers in making management decisions related to agricultural landscapes. On-the-go soil sensors are being used as a proxy to develop digital soil maps because of the data they can collect and their ability to cover a large area quickly. Machine learning, a subcomponent of artificial intelligence, makes predictions from data. Intermixing open-source tools, on-the-go sensor technologies, and machine learning may improve Mississippi soil mapping and crop production. This study aimed to evaluate machine learning for mapping apparent soil electrical conductivity (EC<sub>a</sub>) collected with an on-the-go sensor system at two sites (i.e., MF2, MF9) on a research farm in Mississippi. Machine learning tools (support vector machine) incorporated in Smart-Map, an open-source application, were used to evaluate the sites and derive the apparent electrical conductivity maps. Autocorrelation of the shallow (EC<sub>as</sub>) and deep (EC<sub>ad</sub>) readings was statistically significant at both locations (Moran’s I, p 0.001);however, the spatial correlation was greater at MF2. According to the leave-one-out cross-validation results, the best models were developed for EC<sub>as</sub> versus EC<sub>ad</sub>. Spatial patterns were observed for the EC<sub>as</sub> and EC<sub>ad</sub> readings in both fields. The patterns observed for the EC<sub>ad</sub> readings were more distinct than the EC<sub>as</sub> measurements. The research results indicated that machine learning was valuable for deriving apparent electrical conductivity maps in two Mississippi fields. Location and depth played a role in the machine learner’s ability to develop maps. 展开更多
关键词 Spatial Variability Machine Learning electrical conductivity MAPPING Data Mining
下载PDF
Quantifying the Euphrates Electric Conductivity Depending on Parameters by Dimensional Analysis Method
10
作者 Ali Hassan Hommadi Nadhir Al-Ansari 《Engineering(科研)》 CAS 2023年第5期301-317,共17页
The searching about methods to connect the variables with each other to reach equations including multi variables. The dimensional analysis is a method to facilitate the solution of difficult mathematic equations and ... The searching about methods to connect the variables with each other to reach equations including multi variables. The dimensional analysis is a method to facilitate the solution of difficult mathematic equations and experimental formulas;therefore methods of simplifying the difficult equations and obtaining a new equation with different variables is needed. In this study will use 2 methods (statically with dimensionally analysis) to obtain electric conductivity of water of Euphrates river by multi parameters that are time (t), temperature (Te), density, viscosity, discharge and water depth in upstream of Alhindya barrage which located in Babylon governorate, Iraq during winter 2019. The equations were obtained for EC with Te and t by data were collected from Alhindya barrage office with R<sup>2</sup> = 0.999 and R<sup>2</sup> = 0.995 by statically ways. Dimension analysis was utilized via 2 stages. In first stage was obtained on equation of EC with respect to Te, water density (ρ) and dynamic viscosity (μ) with constant time, depth of water and discharge and we obtain on R<sup>2</sup> was 0.994 and R<sup>2</sup> = 0.986. In second stage was obtained formula of EC with respect to Te, water density (ρ), dynamic viscosity (μ), with variable time, depth of water and discharge with we obtain on R<sup>2</sup> = 0.945 and R<sup>2</sup> = 0.94. The result of research indicates that applying the dimension analysis to connect more than one variable with each other to find best solutions and best methods to facilitate the solving the equations. From dimension analysis gave a clear visualization of the association of several variables to give a result that helps measure the electrical conductivity of water in the absence of a water test device. 展开更多
关键词 electric conductivity TEMPERATURE Dimension Analysis Statistical Analysis
下载PDF
Electrical conductivity of MO(MO=FeO,NiO)-containing CaO-MgO-SiO_2-Al_2O_3 slag with low basicity 被引量:3
11
作者 孙长余 郭兴敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1648-1654,共7页
As a fundamental study on recovery of valuable metals from nonferrous metallurgical slags,electrical conductivity values of MO(MO=FeO,NiO)-containing CaO-MgO-SiO2-Al2O3 slag with a low basicity were measured at diff... As a fundamental study on recovery of valuable metals from nonferrous metallurgical slags,electrical conductivity values of MO(MO=FeO,NiO)-containing CaO-MgO-SiO2-Al2O3 slag with a low basicity were measured at different temperatures using AC impedance spectroscopy.The result shows that the electrical conductivity increased from 1.4 S/m to 14.4 S/m with the increase of the temperature from 1 573 to 1 773 K and the content of MO which is less than 12% under the constant mass ratio of (CaO+MgO) to (SiO2+Al2O3) of 0.47.Moreover,the increase magnitude of the electrical conductivity was also promoted with the increase of the content of MO.The electrical conductivity of FeO-containing slags was close to that of NiO-containing slags when the content was less than 8%;however,it was obviously larger than that of NiO-containing slags when the content was 12%.The activation energy of the electrical conductivity decreased with the increase of MO content. 展开更多
关键词 FEO NIO molten slag electrical conductivity AC impedance spectroscopy
下载PDF
Electrical conductivity and viscosity of cryolite electrolytes for solar grade silicon(Si-SoG) electrowinning 被引量:3
12
作者 Michal KORENKO Zuzana VASKOV +3 位作者 Frantiek IMKO Michal IMURDA Marta AMBROV 石忠宁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3944-3948,共5页
Electrical conductivity of molten binary and ternary mixtures based on the system NaF-AlF3-SiO2 was investigated by means of a tube–cell (made of pyrolytic boron nitride) with stationary electrodes. Viscosity of th... Electrical conductivity of molten binary and ternary mixtures based on the system NaF-AlF3-SiO2 was investigated by means of a tube–cell (made of pyrolytic boron nitride) with stationary electrodes. Viscosity of the binary system Na3AlF6-SiO2 was measured by computerized torsion pendulum method. It was found that conductivity and viscosity varied linearly with temperature in all investigated mixtures. Obtained content dependence of electrical conductivity (isotherms) was divided into two parts. First, one represented the content region up to 10%(mole fraction) of SiO2;second, the region was with a higher content of SiO2 (from 10%up to 40%). While the conductivity considerably decreased with content of SiO2 in the second part; it surprisingly rose in the low content range. A small addition of SiO2 to the molten cryolite (up to 10%) could slightly increase viscosity, but had no influence on the slope of this dependence since it is responsible for a glassy-networks formation in the melt. Further addition of SiO2 to the molten cryolite had a huge effect on the viscosity. 展开更多
关键词 electrical conductivity VISCOSITY solar grade silicon molten salts molten cryolite-silica melts
下载PDF
Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network 被引量:6
13
作者 HUANG Yajie LI Zhen +4 位作者 YE Huichun ZHANG Shiwen ZHUO Zhiqing XING An HUANG Yuanfang 《Chinese Geographical Science》 SCIE CSCD 2019年第2期270-282,共13页
Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accura... Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accuracy of soil salinity, few studies have considered both aspects of spatial variation caused by the influencing factors and spatial autocorrelations for mapping. The objective of this study was to demonstrate that the ordinary kriging combined with back-propagation network(OK_BP), considering the two aspects of spatial variation, which can benefit the improvement of the mapping accuracy of soil salinity. To test the effectiveness of this approach, 70 sites were sampled at two depths(0–30 and 30–50 cm) in Ningxia Hui Autonomous Region, China. Ordinary kriging(OK), back-propagation network(BP) and regression kriging(RK) were used in comparison analysis; the root mean square error(RMSE), relative improvement(RI) and the decrease in estimation imprecision(DIP) were used to judge the mapping quality. Results showed that OK_BP avoided the both underestimation and overestimation of the higher and lower values of interpolation surfaces. OK_BP revealed more details of the spatial variation responding to influencing factors, and provided more flexibility for incorporating various correlated factors in the mapping. Moreover, OK_BP obtained better results with respect to the reference methods(i.e., OK, BP, and RK) in terms of the lowest RMSE, the highest RI and DIP. Thus, it is concluded that OK_BP is an effective method for mapping soil salinity with a high accuracy. 展开更多
关键词 ordinary KRIGING NEURAL network SOIL electrical conductivity VARIABILITY MAPPING Ningxia China
下载PDF
Self-assembly to monolayer graphene film with high electrical conductivity 被引量:3
14
作者 Yi Lu Xiao-Yu Yang Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期52-57,共6页
Monolayer chemically converted graphene (CCG) nanosheets can be homogeneously self-assembled onto silicon wafer modified by 3-aminopr- opyl triethoxysilane (APTES) to form very thin graphene film. The CCG film was... Monolayer chemically converted graphene (CCG) nanosheets can be homogeneously self-assembled onto silicon wafer modified by 3-aminopr- opyl triethoxysilane (APTES) to form very thin graphene film. The CCG film was characterized by FT-IR, XRD, SEM, TEM and AFM. Results show that CCG sheets formed monolayer film after assembled onto silicon wafer and there is a very tight chemical bond between sheets and wafer. Furthermore, the electrical measurements revealed that the monolayer graphene film has an excellent electrical conductivity. 展开更多
关键词 monolayer graphene SELF-ASSEMBLE electrical conductivity
下载PDF
Study on SCR De NO_x mechanism through in situ electrical conductivity measurements on V_2O_5-WO_3/TiO_2 catalysts 被引量:3
15
作者 HA Heon Phil JUNG Soon Hyo +1 位作者 LEE Jun Yub HONG Sung Ho 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期77-83,共7页
V2O5-WO3/TiO2 catalysts were prepared by impregnation method and in situ electrical conductivity measurements were carried out to investigate the reaction mechanism for ammonia SCR (selective catalytic reduction) of N... V2O5-WO3/TiO2 catalysts were prepared by impregnation method and in situ electrical conductivity measurements were carried out to investigate the reaction mechanism for ammonia SCR (selective catalytic reduction) of NOx. The electrical conductivity change with ammonia supply and the increase of electrical conductivity were mainly caused by reduction of the labile surface oxygen. The electrical conductivity change of catalysts shows close relationship with the conversion rate of NOx. Variation of conversion rate in atmosphere without gaseous oxygen also supports that the labile lattice oxygen is indispensable in the initial stage of the de NOx reaction. These results suggest that the liable lattice oxygen acts decisive role in the de NOx mechanism. They also support that De NOx reaction occurs through the Eley-Rideal type mechanism. The amount of labile oxygen can be estimated from the measurement of electrical conductivity change for catalysts with ammonia supply. 展开更多
关键词 De NOx selective catalytic reduction electrical conductivity lattice oxygen
下载PDF
Delineation of Site-Specific Management Zones Based on Temporal and Spatial Variability of Soil Electrical Conductivity 被引量:8
16
作者 LI Yan SHI Zhou LI Feng 《Pedosphere》 SCIE CAS CSCD 2007年第2期156-164,共9页
A coastal saline field of 10.5 ha was selected as the study site and 122 bulk electrical conductivity (ECb) measurements were performed thrice in situ in the topsoil (0-20 cm) across the field using a hand held device... A coastal saline field of 10.5 ha was selected as the study site and 122 bulk electrical conductivity (ECb) measurements were performed thrice in situ in the topsoil (0-20 cm) across the field using a hand held device to assess the spatial variability and temporal stability of the distribution of soil electrical conductivity (EC), to identify the management zones using cluster analysis based on the spatiotemporal variability of soil EC, and to evaluate the probable potential for site-specific management in coastal regions with conventional statistics and geostatistical techniques. The results indicated high coefficients of variation for topsoil salinity over all the three samplings. The spatial structure of the salinity variability remained relatively stable with time. Kriged contour maps, drawn on the basis of spatial variance structure of the data, showed the spatial trend of the salinity distribution and revealed areas of consistently high or consistently low salinity, while a temporal stability map indicated stable and unstable regions. On the basis of the spatiotemporal characteristics, cluster analysis divided the site into three potential management zones, each with different characteristics that could have an impact on the way the field was managed. On the basis of the clearly defined management zones it was concluded that coastal saline land could be managed in a site-specific way. 展开更多
关键词 coastal saline field management zone soil electrical conductivity spatial variability temporal variability
下载PDF
Preparation of Poly(p-phenylene sulfide)/Carbon Composites with Enhanced Thermal Conductivity and Electrical Insulativity via Hybrids of Boron Nitride and Carbon Fillers 被引量:2
17
作者 吴介立 WANG Jinwen 陈枫 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期562-567,共6页
The present work enhanced the thermal conductivity of poly(p-phenylene sulfide)/expanded graphites and poly(p-phenylene sulfide)/carbon nanotubes, by incorporating composites with hexagonal boron nitride, which si... The present work enhanced the thermal conductivity of poly(p-phenylene sulfide)/expanded graphites and poly(p-phenylene sulfide)/carbon nanotubes, by incorporating composites with hexagonal boron nitride, which simultaneously succeeded in raising the electrical conductivity of the systems. A two-step mechanical processing method which includes rotating solid-state premixing and inner mixing was adopted to improve dispersion of the hybrids, contributing to the formation of an interspered thermal conductive network. Similar synergic effect in thermal conductivity enhancement was discovered in the hybrid systems regardless of the dimension difference between the two carbon fillers. Such is postulated to be the one satisfying advantage generated by the afore-mentioned network; the other is the insulativity of the hybrid systems given by the effective blockage of hexagonal boron nitride as an insulating material in our network. 展开更多
关键词 hBN CNT EG rotating solid-state premixing thermal conductivity electrical insulativity dispersion
下载PDF
Effect of Heat Treatment on Electrical Conductivity of Multi-Element Cu Alloy 被引量:2
18
作者 李秋荣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期437-440,共4页
The effect of heat treatment on electrical conductivity of Cu alloy containing Ni, Al, and rare earth(Ce) alloying elements was studied by metallographic microscope, TEM, SEM/EDS and conductance instrument. The result... The effect of heat treatment on electrical conductivity of Cu alloy containing Ni, Al, and rare earth(Ce) alloying elements was studied by metallographic microscope, TEM, SEM/EDS and conductance instrument. The results indicate that heat treatment can improve the electrical conductivity of the material due to the reducing of the solid solution of Cr element in Cu matrix. The better conductivity was obtained after getting solid solution at 980 ℃ for 1 h, and then aging at 500 ℃ for 4 h. 展开更多
关键词 Cu alloy heat treatment electrical conductivity rare earths
下载PDF
Electrical conductivity effect on MHD mixed convection of nanofluid flow over a backward-facing step 被引量:4
19
作者 SELIMEFENDIGIL Fatih OCAN CBAN Seda OTOP Hakan F. 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1133-1145,共13页
In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uni... In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field. 展开更多
关键词 electrical conductivity nanofluids backward-facing step MHD flow mixed convection
下载PDF
Electrical conductivity changes of bulk tin and Sn-3.0Ag-0.5Cu in bulk and in joints during isothermal aging 被引量:2
20
作者 Bin Liu Fu Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期453-458,共6页
The changes of electrical conductivity (resistance) between Sn-3.0Ag-0.5Cu solder joints and printed circuit board (PCB) assembly during aging at 125℃ were investigated by the four-point probe technique. The micr... The changes of electrical conductivity (resistance) between Sn-3.0Ag-0.5Cu solder joints and printed circuit board (PCB) assembly during aging at 125℃ were investigated by the four-point probe technique. The microstructural characterizations of interfacial layers between the solder matrix and the substrate were examined by optical microscopy and scanning electronic microscopy. Different types of specimens were designed to consider several factors. The experimental results indicate that electrical conductivities (resistances) and residual shear strengths of the solder joint specimens significantly decrease after 1000 h during isothermal aging. Microcracks generate in the solder matrix at the first 250 h. Besides, the evolutions of microstructural characterizations at the interface and the matrix of solder joints were noted in this research. 展开更多
关键词 lead-free solder electrical conductivity isothermal aging microcrack thermal stress
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部