It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to...It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.展开更多
Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability.In this study,field hydraulic characterization was performed by using geoelectric approaches.The relations between electrical...Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability.In this study,field hydraulic characterization was performed by using geoelectric approaches.The relations between electrical-hydraulic(eh)conductivities were modeled hypothetically and calibrated empirically.Correlations were based on the stochastic models and field-scale hydraulic parameters were contingent on pore-level parameters.By considering variation in pore-size distributions over eh conduction interval,the relations were scaled-up for use at aquifer-level.Material-level electrical conductivities were determined by using Vertical Electrical Survey and hydraulic conductivities by analyzing aquifer tests of eight boreholes in the Olbanita aquifer located in Kenya rift.VES datasets were inverted by using the computer code IP2Win.The main result is that ln T=0.537(ln Fa)+3.695;the positive gradient indicating eh conduction through pore-surface networks and a proxy of weathered and clayey materials.An inverse(1/F-K)correlation is observed.Hydraulic parameters determined using such approaches may possibly contribute significantly towards sustainable yield management and planning of groundwater resources.展开更多
In order to online monitor the running state of variable voltage and variable frequency(VVVF)hydraulic system,this paper presents a graphic monitoring method that fuses the information of variable frequency electric p...In order to online monitor the running state of variable voltage and variable frequency(VVVF)hydraulic system,this paper presents a graphic monitoring method that fuses the information of variable frequency electric parameters.This paper first analyzes how the voltage and current of the motor stator change with the operation conditions of VVVF hydraulic system.As a result,we draw the relationship between the electric parameters(voltage and current)and power frequency.Then,the signals of the voltage and current are fused as dynamic figures based on the idea of Lissajous figures,and the values of the electric parameters are related to the features of the dynamic figures.Rigorous theoretical analysis establishes the function between the electric power of the variable frequency motor(VFM)and the features of the plotted dynamic figures including area of diagram,area of bounding rectangle,tilt angle,etc.Finally,the effectiveness of the proposed method is verified by two cases,in which the speed of VFM and the load of VVVF hydraulic system are changed.The results show that the increase of the speed of VFM enhances its three-phase electric power,but reduces the tilt angle of the plotted dynamic figures.In addition,as the load of VVVF hydraulic system is increased,the three-phase electric power of VFM and the tilt angle of the plotted dynamic figures are both increased.This paper provides a new way to online monitor the running state of VVVF hydraulic system.展开更多
This study proposed a battery management approach for the electric hydraulic pump system of a lifting trolley.The pump system was powered by two 12-V lead-acid batteries in series.Because direct measurement of the act...This study proposed a battery management approach for the electric hydraulic pump system of a lifting trolley.The pump system was powered by two 12-V lead-acid batteries in series.Because direct measurement of the actual battery state of charge is unlikely,it has mostly been determined through estimation based on the measured open-circuit voltage.A discharge current will result in a voltage drop and hence a lower voltage during discharge;however,the battery voltage will return to the original open-circuit voltage once the discharge stops.The operating current of the electric hydraulic pump system employed in this study was associated with three factors:the lifting height,lifting load,and battery state of charge.The operating current remained constant during the first half of the lifting phase and increased gradually with the lifting height in the second half.The operating current peaked when the lifting height reached the maximum.The power management approach for the electric hydraulic pump system featured the following basic functions:overcharge protection,overdischarge protection,short-circuit protection,overload protection,and an operating timer established in accordance with the system’s operating current variation.According to the manufacturer-defined maximum lifting load and lifting height of the lifting trolley,this study conducted experiments to obtain the maximum required operating time.An operating time greater than the maximum required operating time indicates the occurrence of an unexpected event,discharge should be stopped until the fault is resolved.展开更多
According to the composition and the principle of the liquid-electric energy-sensing damper, the corresponding hydraulic regenerative model is designed. In this paper, an advanced type of shock absorber combined with ...According to the composition and the principle of the liquid-electric energy-sensing damper, the corresponding hydraulic regenerative model is designed. In this paper, an advanced type of shock absorber combined with the mechanical and electromagnetic hydraulic structure has been proposed that recycles the energy dissipated by shock absorber in the driving process. In addition, the damping characteristics of the conventional mechanical vehicle and the advanced hydraulic regenerative mechanical vehicle have?been analyzed by using AMESim simulation. The regenerative suspension is reformed from the traditional hydraulic and pneumatic suspension. The suspension absorbs kinetic energy converts it into hydraulic potential and pneumatic power to be stored in the accumulator. The kinetic energy is then converted into electricity instead of heat by using the hydraulic suspension and Power-Generating Shock Absorber (PGSA). The AMESim simulation results have efficiently verified the displacement characteristics curves and flow rate of hydraulic fluid in the body. Finally the conversion of energy produced by advanced hydraulic regenerative mechanical vehicle transferred into electrical energy. The designed hydraulic shock absorber allows a significant fuel saving of 1.5% to 4% depending on the vehicle and driving conditions.展开更多
A geophysical investigation was carried out to characterize aquifer parameters and assess the groundwater condition in Abak, southern Nigeria. Vertical electrical sounding (VES) was carried out using Schlumberger conf...A geophysical investigation was carried out to characterize aquifer parameters and assess the groundwater condition in Abak, southern Nigeria. Vertical electrical sounding (VES) was carried out using Schlumberger configuration in 10 locations within the area. Both manual and computer interpretation of the resistivity data reveals three to four geoelectric units (laterite topsoil, medium-grained sand, coarse-grained sand, and sandy clay sand) which agrees with the lithologic log from existing boreholes. The aquifer layer was identified along the third formation with resistivity values ranging from 1239 - 5719 Ωm and aquifer depth ranging from 30.2 - 54.8 m. The aquifer thickness ranged from 24.2 - 43.7 m. Hydraulic conductivity ranged from 0.1206 m/day - 0.5026 m/day with an average value of 0.29403 m/day. Formation factor ranged from 14.55 - 16.64. Porosity ranged from 15.98% - 22.40%, with an average value of 19.64%. The aquiferous zone falls within the medium/coarse-grained sand. The aquifer is shallow, unconfined, and prolific with a little overburden formation of 13.5 m. The area shows good prospects for groundwater development.展开更多
Assessment of fractured rock aquifers in many parts of the world is complicated given their strong heterogeneity. Delineation of the subsurface geological formation in the weathered terrain is essential for groundwate...Assessment of fractured rock aquifers in many parts of the world is complicated given their strong heterogeneity. Delineation of the subsurface geological formation in the weathered terrain is essential for groundwater exploration. To achieve this goal, 2D electrical resistivity tomography(ERT) and self-potential(SP) in combination with joint profile method(JPM) and boreholes have been carried out to delineate the subsurface geological units, detect the fracture/fault zones in hard rock, monitor the groundwater flow, and estimate the groundwater reserves contained within the weathered terrain at a complex heterogeneous site of Huangbu, South Guangdong of China. The integration of resistivity images with the borehole lithology along three profiles delineates three subsurface distinct layers namely topsoil cover, weathered and unweathered layers. The incorporation of ERT and SP with JPM reveal five fractures/faults, i.e., F_1, F_2, F_3, F_4 and F_5. 2D ERT models interpret the less resistive anomalies as the fractures/faults zones, and high resistive anomalies as the fresh bedrock. The inversion program based on the smoothness-constraint is used on the resistivity field data to get more realistic three layered model. SP measurements are obtained along the same electrical profiles which provide the negative anomalies clearly indicating the groundwater preferential flow pathways along the fracture/fault zones. Hydraulic parameters namely hydraulic conductivity and transmissivity were determined to estimate the groundwater resources contained within the fractures/faults. The integrated results suggest that the fractures/faults zones are most appropriate places of drilling for groundwater exploration in the investigated area. Geophysical methods coupled with the upfront borehole data provides better understanding about the conceptual model of the subsurface geological formations. The current investigation demonstrates the importance of the integrated geophysical methods as a complementary approach for groundwater assessment in the hard rock weathered areas.展开更多
The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the...The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m^-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m^-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.展开更多
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad...Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.展开更多
The geophysical study was performed east of Rutba town due to vertical electrical sounding in a net of forty points between Dhalaa and Dhabaa valleys. Geophysical electrical model applicated using Winsev6 program to d...The geophysical study was performed east of Rutba town due to vertical electrical sounding in a net of forty points between Dhalaa and Dhabaa valleys. Geophysical electrical model applicated using Winsev6 program to determine the geo-electrical layers. Three geo-electrical layers were derived from geophysical survey. These layers are composed of four sediment types, such as clays, marls, marly carbonates, carbonates (dolomitic limestone), characterized by resistivity less than 20 ohm-m, 20 - 100 ohm-m, 100 - 350 ohm-m and more than 350 ohm-m, respectively. The thickness of the geo-electrical horizons are increased in Dhabaa Fault zone which characterized by multi karst shapes reflected as karst topography on the surface, which represents subsurface structural boundary for Mullusi aquifer, where this aquifer considered as main water supply for Rutba people in drinking water throughout 17 water wells located in Dhabaa site. Two empirical relation between Formation Factors (F) and Hydraulic Conductivity (K) obtained using linear and Polynomial regression techniques. The first equation of linear fit (F = 11.82 + 116.45 K;with a Correlation Coefficient of 0.94) represents the contribution between formation factor and hydraulic conductivity of a 2nd layer in Mullusi aquifer. The second equation of 3rd degree Polynomial Fit (F = 20.32 - 203.33 K + 1554.99 K2 -3127.30 K3;with a Correlation Coefficient of 0.75) represents the contribution between formation factor and hydraulic conductivity of a 3rd layer in Mullusi aquifer.展开更多
As a newly proposed two-terminal mechanical element, there are many realizations of inerter such as ball-screw, rack and pinion,hydraulic, fluid and mechatronic inerter. This paper concerns about a novel mechatronic i...As a newly proposed two-terminal mechanical element, there are many realizations of inerter such as ball-screw, rack and pinion,hydraulic, fluid and mechatronic inerter. This paper concerns about a novel mechatronic inerter, which is consisted of a hydraulic piston inerter and linear motor, called hydraulic electric inerter(HEI). Firstly, the structural components and the working principles of two types HEI device are introduced, and the dynamic model of the HEI is established. Then, three classifications of mechatronic inerter, namely, the single motor type, the linear inerter-motor type and the rotary inerter-motor type are presented,and in the meanwhile, some comparisons among the three types mechatronic inerter are analyzed. Subsequently, a methodology of designing and experimental tests of the HEI device is proposed by considering the rated working conditions of the linear motor and the electric elements. At last, the HEI device is conducted, and the force tests of the non-loaded HEI and loaded HEI are tested in order to validate their properties. The experimental results are analyzed, and the discrepancies are also further discussed.展开更多
Two-speed automatic transmission is one solution to increase the economic efficiency and dynamic performance of battery electric vehicles(BEV).Hydraulic control unit(HCU)is a key component in automatic transmissions,w...Two-speed automatic transmission is one solution to increase the economic efficiency and dynamic performance of battery electric vehicles(BEV).Hydraulic control unit(HCU)is a key component in automatic transmissions,which determines the quality of shifting directly.Based on the structural scheme and shift logic of a two-speed dedicated electric vehicles transmission(2DET)with two wet clutches,we designs a 2DET hydraulic control unit composed of three subsystems:pressure regulating and flow control system,shift operated and control system and cooling and lubrication system.The results of the experiments,including the valve body bench test,transmission bench test and vehicle test,show that the design of hydraulic control unit meets the requirements.展开更多
An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) wa...An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) was built by using the software Deform-3D. FE simulation experiments with and without electric-hydraulic chattering were carried out to analyze the velocity fields and the metal grid flow lines. The extrusion ex- periments of the cup part were also performed under different conditions. The difference of metal flow lines with and without electric-hydraulic chattering was discussed via a scanning electron microscope (SEM) and the Keyence super-depth three-dimensional microscopic system. The results showed that with the electric-hydraulic chattering, the velocity of material flow increases, whereas deformation resistance decreases. Electric hydraulic chattering results in easy metal flow, small bending degree of metal flow lines, slender and dense metal grains, and thereby an improved quality of the deformed parts.展开更多
文摘It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.
基金funded by the Kenya Government through the National Research Fund
文摘Groundwater yield in the Kenya Rift is highly unsustainable owing to geological variability.In this study,field hydraulic characterization was performed by using geoelectric approaches.The relations between electrical-hydraulic(eh)conductivities were modeled hypothetically and calibrated empirically.Correlations were based on the stochastic models and field-scale hydraulic parameters were contingent on pore-level parameters.By considering variation in pore-size distributions over eh conduction interval,the relations were scaled-up for use at aquifer-level.Material-level electrical conductivities were determined by using Vertical Electrical Survey and hydraulic conductivities by analyzing aquifer tests of eight boreholes in the Olbanita aquifer located in Kenya rift.VES datasets were inverted by using the computer code IP2Win.The main result is that ln T=0.537(ln Fa)+3.695;the positive gradient indicating eh conduction through pore-surface networks and a proxy of weathered and clayey materials.An inverse(1/F-K)correlation is observed.Hydraulic parameters determined using such approaches may possibly contribute significantly towards sustainable yield management and planning of groundwater resources.
基金National Natural Science Foundation of China(No.51675399)
文摘In order to online monitor the running state of variable voltage and variable frequency(VVVF)hydraulic system,this paper presents a graphic monitoring method that fuses the information of variable frequency electric parameters.This paper first analyzes how the voltage and current of the motor stator change with the operation conditions of VVVF hydraulic system.As a result,we draw the relationship between the electric parameters(voltage and current)and power frequency.Then,the signals of the voltage and current are fused as dynamic figures based on the idea of Lissajous figures,and the values of the electric parameters are related to the features of the dynamic figures.Rigorous theoretical analysis establishes the function between the electric power of the variable frequency motor(VFM)and the features of the plotted dynamic figures including area of diagram,area of bounding rectangle,tilt angle,etc.Finally,the effectiveness of the proposed method is verified by two cases,in which the speed of VFM and the load of VVVF hydraulic system are changed.The results show that the increase of the speed of VFM enhances its three-phase electric power,but reduces the tilt angle of the plotted dynamic figures.In addition,as the load of VVVF hydraulic system is increased,the three-phase electric power of VFM and the tilt angle of the plotted dynamic figures are both increased.This paper provides a new way to online monitor the running state of VVVF hydraulic system.
文摘This study proposed a battery management approach for the electric hydraulic pump system of a lifting trolley.The pump system was powered by two 12-V lead-acid batteries in series.Because direct measurement of the actual battery state of charge is unlikely,it has mostly been determined through estimation based on the measured open-circuit voltage.A discharge current will result in a voltage drop and hence a lower voltage during discharge;however,the battery voltage will return to the original open-circuit voltage once the discharge stops.The operating current of the electric hydraulic pump system employed in this study was associated with three factors:the lifting height,lifting load,and battery state of charge.The operating current remained constant during the first half of the lifting phase and increased gradually with the lifting height in the second half.The operating current peaked when the lifting height reached the maximum.The power management approach for the electric hydraulic pump system featured the following basic functions:overcharge protection,overdischarge protection,short-circuit protection,overload protection,and an operating timer established in accordance with the system’s operating current variation.According to the manufacturer-defined maximum lifting load and lifting height of the lifting trolley,this study conducted experiments to obtain the maximum required operating time.An operating time greater than the maximum required operating time indicates the occurrence of an unexpected event,discharge should be stopped until the fault is resolved.
文摘According to the composition and the principle of the liquid-electric energy-sensing damper, the corresponding hydraulic regenerative model is designed. In this paper, an advanced type of shock absorber combined with the mechanical and electromagnetic hydraulic structure has been proposed that recycles the energy dissipated by shock absorber in the driving process. In addition, the damping characteristics of the conventional mechanical vehicle and the advanced hydraulic regenerative mechanical vehicle have?been analyzed by using AMESim simulation. The regenerative suspension is reformed from the traditional hydraulic and pneumatic suspension. The suspension absorbs kinetic energy converts it into hydraulic potential and pneumatic power to be stored in the accumulator. The kinetic energy is then converted into electricity instead of heat by using the hydraulic suspension and Power-Generating Shock Absorber (PGSA). The AMESim simulation results have efficiently verified the displacement characteristics curves and flow rate of hydraulic fluid in the body. Finally the conversion of energy produced by advanced hydraulic regenerative mechanical vehicle transferred into electrical energy. The designed hydraulic shock absorber allows a significant fuel saving of 1.5% to 4% depending on the vehicle and driving conditions.
文摘A geophysical investigation was carried out to characterize aquifer parameters and assess the groundwater condition in Abak, southern Nigeria. Vertical electrical sounding (VES) was carried out using Schlumberger configuration in 10 locations within the area. Both manual and computer interpretation of the resistivity data reveals three to four geoelectric units (laterite topsoil, medium-grained sand, coarse-grained sand, and sandy clay sand) which agrees with the lithologic log from existing boreholes. The aquifer layer was identified along the third formation with resistivity values ranging from 1239 - 5719 Ωm and aquifer depth ranging from 30.2 - 54.8 m. The aquifer thickness ranged from 24.2 - 43.7 m. Hydraulic conductivity ranged from 0.1206 m/day - 0.5026 m/day with an average value of 0.29403 m/day. Formation factor ranged from 14.55 - 16.64. Porosity ranged from 15.98% - 22.40%, with an average value of 19.64%. The aquiferous zone falls within the medium/coarse-grained sand. The aquifer is shallow, unconfined, and prolific with a little overburden formation of 13.5 m. The area shows good prospects for groundwater development.
基金sponsored by CAS-TWAS President’s Fellowship for International PhD Studentsfinancially supported by the National Natural Science Foundation of China (NSFC+3 种基金 Grant No. 41772320)the Strategic Priority Research Program of the University of Chinese Academy of Sciences (Grant No.XDB 10030100)CAS-TWAS President’s FellowshipKey Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing China
文摘Assessment of fractured rock aquifers in many parts of the world is complicated given their strong heterogeneity. Delineation of the subsurface geological formation in the weathered terrain is essential for groundwater exploration. To achieve this goal, 2D electrical resistivity tomography(ERT) and self-potential(SP) in combination with joint profile method(JPM) and boreholes have been carried out to delineate the subsurface geological units, detect the fracture/fault zones in hard rock, monitor the groundwater flow, and estimate the groundwater reserves contained within the weathered terrain at a complex heterogeneous site of Huangbu, South Guangdong of China. The integration of resistivity images with the borehole lithology along three profiles delineates three subsurface distinct layers namely topsoil cover, weathered and unweathered layers. The incorporation of ERT and SP with JPM reveal five fractures/faults, i.e., F_1, F_2, F_3, F_4 and F_5. 2D ERT models interpret the less resistive anomalies as the fractures/faults zones, and high resistive anomalies as the fresh bedrock. The inversion program based on the smoothness-constraint is used on the resistivity field data to get more realistic three layered model. SP measurements are obtained along the same electrical profiles which provide the negative anomalies clearly indicating the groundwater preferential flow pathways along the fracture/fault zones. Hydraulic parameters namely hydraulic conductivity and transmissivity were determined to estimate the groundwater resources contained within the fractures/faults. The integrated results suggest that the fractures/faults zones are most appropriate places of drilling for groundwater exploration in the investigated area. Geophysical methods coupled with the upfront borehole data provides better understanding about the conceptual model of the subsurface geological formations. The current investigation demonstrates the importance of the integrated geophysical methods as a complementary approach for groundwater assessment in the hard rock weathered areas.
文摘The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m^-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m^-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.
基金863 National Project EQ7200HEV hybridelectric vehicle (2001AA501200,2003AA501200)
文摘Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.
文摘The geophysical study was performed east of Rutba town due to vertical electrical sounding in a net of forty points between Dhalaa and Dhabaa valleys. Geophysical electrical model applicated using Winsev6 program to determine the geo-electrical layers. Three geo-electrical layers were derived from geophysical survey. These layers are composed of four sediment types, such as clays, marls, marly carbonates, carbonates (dolomitic limestone), characterized by resistivity less than 20 ohm-m, 20 - 100 ohm-m, 100 - 350 ohm-m and more than 350 ohm-m, respectively. The thickness of the geo-electrical horizons are increased in Dhabaa Fault zone which characterized by multi karst shapes reflected as karst topography on the surface, which represents subsurface structural boundary for Mullusi aquifer, where this aquifer considered as main water supply for Rutba people in drinking water throughout 17 water wells located in Dhabaa site. Two empirical relation between Formation Factors (F) and Hydraulic Conductivity (K) obtained using linear and Polynomial regression techniques. The first equation of linear fit (F = 11.82 + 116.45 K;with a Correlation Coefficient of 0.94) represents the contribution between formation factor and hydraulic conductivity of a 2nd layer in Mullusi aquifer. The second equation of 3rd degree Polynomial Fit (F = 20.32 - 203.33 K + 1554.99 K2 -3127.30 K3;with a Correlation Coefficient of 0.75) represents the contribution between formation factor and hydraulic conductivity of a 3rd layer in Mullusi aquifer.
基金supported by the China Postdoctoral Science Foundation(Grant No.2019M651723)the National Natural Science Foundation of China(Grant No.51705209)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20160533)the Foundation for Jiangsu Key Laboratory of Traffic and Transportation Security(Grant No.TTS2018-01)
文摘As a newly proposed two-terminal mechanical element, there are many realizations of inerter such as ball-screw, rack and pinion,hydraulic, fluid and mechatronic inerter. This paper concerns about a novel mechatronic inerter, which is consisted of a hydraulic piston inerter and linear motor, called hydraulic electric inerter(HEI). Firstly, the structural components and the working principles of two types HEI device are introduced, and the dynamic model of the HEI is established. Then, three classifications of mechatronic inerter, namely, the single motor type, the linear inerter-motor type and the rotary inerter-motor type are presented,and in the meanwhile, some comparisons among the three types mechatronic inerter are analyzed. Subsequently, a methodology of designing and experimental tests of the HEI device is proposed by considering the rated working conditions of the linear motor and the electric elements. At last, the HEI device is conducted, and the force tests of the non-loaded HEI and loaded HEI are tested in order to validate their properties. The experimental results are analyzed, and the discrepancies are also further discussed.
基金the National Natural Science Foundation of China(No.51405010)Beijing Key Laboratory for High-efficient Power Transmission and System Control of New Energy Resource Vehicles.
文摘Two-speed automatic transmission is one solution to increase the economic efficiency and dynamic performance of battery electric vehicles(BEV).Hydraulic control unit(HCU)is a key component in automatic transmissions,which determines the quality of shifting directly.Based on the structural scheme and shift logic of a two-speed dedicated electric vehicles transmission(2DET)with two wet clutches,we designs a 2DET hydraulic control unit composed of three subsystems:pressure regulating and flow control system,shift operated and control system and cooling and lubrication system.The results of the experiments,including the valve body bench test,transmission bench test and vehicle test,show that the design of hydraulic control unit meets the requirements.
文摘An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) was built by using the software Deform-3D. FE simulation experiments with and without electric-hydraulic chattering were carried out to analyze the velocity fields and the metal grid flow lines. The extrusion ex- periments of the cup part were also performed under different conditions. The difference of metal flow lines with and without electric-hydraulic chattering was discussed via a scanning electron microscope (SEM) and the Keyence super-depth three-dimensional microscopic system. The results showed that with the electric-hydraulic chattering, the velocity of material flow increases, whereas deformation resistance decreases. Electric hydraulic chattering results in easy metal flow, small bending degree of metal flow lines, slender and dense metal grains, and thereby an improved quality of the deformed parts.