The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0....The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0.93 eV(C-V) and 0.87 eV(I-V)/1.03 eV(C-V). However, the BH rises to 0.99 eV(I-V)/1.18 eV(C-V)and then slightly deceases to 0.92 eV(I-V)/1.03 eV(C-V) after annealing at 300 ℃ and 400 ℃. The utmost BH is attained after annealing at 300 ℃ and thus the optimum annealing for SBD is 300 ℃. By applying Cheung's functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung's and ΨS-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 ℃ annealing and then slightly increases after annealing at 400 ℃. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.展开更多
文摘The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0.93 eV(C-V) and 0.87 eV(I-V)/1.03 eV(C-V). However, the BH rises to 0.99 eV(I-V)/1.18 eV(C-V)and then slightly deceases to 0.92 eV(I-V)/1.03 eV(C-V) after annealing at 300 ℃ and 400 ℃. The utmost BH is attained after annealing at 300 ℃ and thus the optimum annealing for SBD is 300 ℃. By applying Cheung's functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung's and ΨS-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 ℃ annealing and then slightly increases after annealing at 400 ℃. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.