Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SE...Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SEM) and a 3D optical profiler(3DOP). The results indicated that 3DOP could supply clearer and more detailed arc erosion morphology information. Arc erosion resistance of Ag/SnO_2(10) electrical contact material was the best and that of Ag/CuO(10) was the worst. Arc erosion morphology of Ag/MeO(10) electrical contact materials mainly included three different types. Arc erosion morphologies of Ag/ZnO(10) and Ag/SnO_2(10) electrical contact materials were mainly liquid splash and evaporation, and those of Ag/CuO(10) and Ag/CdO(10) were mainly material transfer from anode to cathode. Arc erosion morphology of Ag/SnO_2(6)In_2O_3(4) electrical contact materials included both liquid splash, evaporation and material transfer. In addition, the formation process and mechanism on arc erosion morphology of Ag/MeO(10) electrical contact materials were discussed.展开更多
The sliding electrical contact behavior of AuAgCu brush on Au plating was investigated at various normal loads and sliding speeds.The contact voltage drop and electrical noise between the two brushes were measured and...The sliding electrical contact behavior of AuAgCu brush on Au plating was investigated at various normal loads and sliding speeds.The contact voltage drop and electrical noise between the two brushes were measured and the resistance waveforms were recorded.The morphologies of the worn surfaces and wear debris of the brush and plating were observed.The results show that the contact voltage drop and electrical noise decrease with the addition of load whereas increase drastically with increasing sliding speed.With the electrical current in vacuum,the wear process of AuAgCu brush on Au plating involves adhesion,transfer of gold from the plating to the brush,rolling of wear debris between contact surfaces and arc-induced melt at the contact edge,and this gold-on-gold sliding electrical contact system is reliable within experiment period.展开更多
Arc erosion studies are conducted on AgSnO2 contact materials at different stages in the break operation. A resistive load arrangement is used with up to 42 V DC at 24 A and a constant contact opening velocity. The ar...Arc erosion studies are conducted on AgSnO2 contact materials at different stages in the break operation. A resistive load arrangement is used with up to 42 V DC at 24 A and a constant contact opening velocity. The arc current is terminated at different stages as the arc is drawn between the contacts enabling a study of the arcing phenomena up to that point. Surface profiling of the contacts is conducted to determine the extent of erosion at the different stages as the arc is drawn. Spectral analysis is also conducted on the arc and then related to the extent of erosion. The results show that particular features occur at different stages as the arc is drawn. As the arc is initially established, it goes through an "Arc Generation" regime where the arc roots are small and immobile on both the anode and the cathode. Material transfer occurs mainly from anode to cathode. The spectral analysis indicates that Sn and O species dominate the arc followed by the Ag species. As the arc is drawn further and enters the "Arc Degeneration" regime, the anode undergoes significantly larger erosion than the cathode. Also, both contacts indicate that multiple arc roots have formed, which are highly mobile in the later stages of the discharge. The spectral analysis indicates that Ag and N species are in high concentrations compared to other species. The mechanisms of erosion and deposition are discussed in relation to the species within the arc discharge. For the complete break operation, it is found that the anode undergoes major erosion, and it is thought that the gaseous ions species do not dominate the arc under these conditions of short arcs and voltage 〈42 V to cause cathode erosion.展开更多
A Ti^4+-doped nano-structured AgSnO2 material was prepared using sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The ...A Ti^4+-doped nano-structured AgSnO2 material was prepared using sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that Ti^4+ cations are successfully doped into the crystal lattice of SnO2, and thus significantly improve the electrical conductivity of the sample. Furthermore, the coating of Ag on Ti^4+-doped SnO2 nano-sized particles enhances the surface wettability and enables the resulting AgSnO2 material to have better mechanical properties.展开更多
A uniform transient temperature field model of electrical contacts operation was found by analyzing the process of closing arc constriction resistance Joule heat ~ breaking arc. Essential parameters of Ag/La2NiO4 elec...A uniform transient temperature field model of electrical contacts operation was found by analyzing the process of closing arc constriction resistance Joule heat ~ breaking arc. Essential parameters of Ag/La2NiO4 electrical contact material for transient temperature field calculation were obtained through tests of electrical contact experimental instrument under 18 V DC in different cur- rents, other correlation experiments, and calculation anal- ysis. The finite element method was applied to solve the transient temperature field, and the features and distribution of the transient temperature field were obtained. The condition of material erosion and mass transfer can be forecasted by those calculation results. It is beneficial to research about the lifetime of Ag/La2NiO4 electrical material.展开更多
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo...mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.展开更多
A good contact between the pantograph and catenary is critically important for the working reliability of electric trains, while the basic understanding on the electrical contact evolution during the pantograph--caten...A good contact between the pantograph and catenary is critically important for the working reliability of electric trains, while the basic understanding on the electrical contact evolution during the pantograph--catenary system working is still ambiguous so far. In this paper, the evolution of electric contact was studied in respects of the contact resistance, temperature rise, and microstructure variation, based on a home-made pantograph-catenary simulation system. Pure carbon strips and copper alloy contact wires were used, and the experimental electrical current, sliding speed, and normal force were set as 80 A, 30 km/h, and 80 N, respectively. The contact resistance presented a fluctuation without obvious regularity, concentrating in the region of 25 and 50 mf~. Temperature rise of the contact point experienced a fast increase at the first several minutes and finally reached a steady state. The surface damage of carbon trips in microstructure analysis revealed a complicated interaction of the sliding friction, joule heating, and arc erosion.展开更多
Because of the different ways in which contact materials work, the basic requirements for silver metal oxide contact materials are different. They are anti-welded and anti-erosion when closed, anti-erosion when broken...Because of the different ways in which contact materials work, the basic requirements for silver metal oxide contact materials are different. They are anti-welded and anti-erosion when closed, anti-erosion when broken, and arc easily moved and have smaller contact resistance. In this paper, La2O3 is used as a stable oxide in contact material to replace CdO. A new type of Ag/SnO2-La2O3-Bi2O3 contact material is first obtained through using powder metallurgical method. Then electrical contact material parameter tester is used to test the electrical contact performance of the contact material. Through experiments, the arcing voltage and current curves, arcing energy curves, fusion power curves while broken and contact resistance while closed were obtained. Analysis of the results showed that the addition of La2O3 makes the contact material have the following advantages: smaller electrical wear, smaller arc energy, smaller contact resistance and arc is more easily extinguished.展开更多
The impact mechanism of environmental fac tors, such as corrosive atmosphere, on connector materials was investigated, and the porosity of gold plating was tested. Series of inspections and analytical research meth od...The impact mechanism of environmental fac tors, such as corrosive atmosphere, on connector materials was investigated, and the porosity of gold plating was tested. Series of inspections and analytical research meth ods were introduced in this article. The surface morphology of specimens after corrosion was observed by stereoscopic microscope and scanning electron microscope. Chemical constitution was examined by Xray energy spectrum. The contact resistances were measured by fourpoint method. The experiment results show that after exposure to certain environment, the corrosion products, such as Cu20, Cu(NO3)2.3H20, and NiO, are observed on the surface of the specimens without gold coatings, whereas the corrosion products appear to have circleshaped spots on goldplating surface after corrosion test, which indicate that the gold plating has good corrosion protection. The porosity is increased with the increase of corrosion time for every kind of specimens gold plated, and the corrosion degree of gold plating specimens is decreased with the increase of the thickness of gold coatings. The static contact resistances of circleshaped spots appear higher contact resistance than normal value, which can reach to 2,000 mr2 nearly. It is found that the high and unstable contact resistance of the pore and products is more likely to cause contact failure.展开更多
Arc erosion behavior of Ag/Ni materials with different operation numbers was investigated by OM,3DOP and SEM.The results indicated that the arc erosion of Ag/10Ni electrical contact material fabricated by sintering−ex...Arc erosion behavior of Ag/Ni materials with different operation numbers was investigated by OM,3DOP and SEM.The results indicated that the arc erosion of Ag/10Ni electrical contact material fabricated by sintering−extrusion technology was more and more serious with the operation numbers increasing from 1000 to 40000.With the same operation numbers,the arc erosion on anode was more serious than that on cathode.Besides,the pores preferred to emerge around the arc effect spot during the first 10000 operations.And the morphology of the molten silver on cathode and anode was different due to the action of gravity and arc erosion.Furthermore,the relationships among arc energy,arc time,welding force,electric resistivity,temperature and mass change on contacts were discussed,which indicated that the mass loss on cathode was mainly caused by the fracture of molten bridge.展开更多
The dynamic contact resistances of HH52P electromagnetic relays are measured under different ambient air tem- perature. Their diagnostic parameters are extracted and determined. It is found that the ambient air temper...The dynamic contact resistances of HH52P electromagnetic relays are measured under different ambient air tem- perature. Their diagnostic parameters are extracted and determined. It is found that the ambient air temperature obviously influ- ences some parameters. In order to research its influence on the electrical contact reliability of electromagnetic relay, the statistic analysis is applied to study the static contact resistance, the max of the dynamic contact resistance and the bounce time. It is found that the ambient air temperature regularly influences the three parameters. Thoroughly, the phenomenon is studied and analyzed in the point of material science so as to probe into the essential matter of it.展开更多
Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions ...Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions were also developed using the conventional techniques of Liquid Phase Sintering (LPS) and Infiltration. Electrical conductivity measurements showed that the specimens produced by the SPS process had substantially higher levels of electrical conductivity than those produced by the other methods. Relative density measurements showed that the SPS specimens achieved very high densification, with relative densities in the range of 99.1% - 100%. On the other hand, the specimens produced by LPS and infiltration had relative densities in the range of 88% - 92% and 96% - 98% respectively. The superior conductivity of the SPS specimens has been attributed to the virtually full densification achieved by the process. The effect of porosity on electrical conductivity has been discussed and three standard models were assessed using results from porous sintered skeletons of pure tungsten and pure molybdenum.展开更多
A parallel method for the fabrication of metal contacts on single-walled carbon nanotube(SWNT)arrays was presented and the electrical contact property was evaluated by a SWNT-field effect transistor structure. Copper ...A parallel method for the fabrication of metal contacts on single-walled carbon nanotube(SWNT)arrays was presented and the electrical contact property was evaluated by a SWNT-field effect transistor structure. Copper and gold contacts were fabricated on both semiconducting SWNTs and metallic SWNTs by using a maskless electrodeposition process. The SWNT array remained a p-type semiconductor after the electrodeposition. The contact resistance between SWNT array and microelectrodes was reduced more than 50% by the established copper contacts. The source-drain current of the carbon nanotube field-effect transistor(CNT-FET)structure can be further increased from 7.9 μA to 9.2 μA when the copper contacts were replaced by gold ones,which is probably due to the better contact property to SWNT of gold contacts with fine grain size.展开更多
When the circuit breaker cuts the electric current, an electric arc is created between its electrodes. The success or failure of breaking the electric current by the circuit breaker depends strongly on the physico-che...When the circuit breaker cuts the electric current, an electric arc is created between its electrodes. The success or failure of breaking the electric current by the circuit breaker depends strongly on the physico-chemical properties of the electric arc created, such as the composition of which depends on the material of the electrical contacts. In this work, we determine the equilibrium composition of the electric arc in the low voltage air circuit breaker with silver tin dioxide alloy contacts, in a temperature range from 500 K to 15,000 K and at atmospheric pressure. We use the Gibbs free energy minimization method and develop a computer code to determine the equilibrium composition of the created plasma. The analysis of the results obtained shows that O<sub>2</sub> particles with a dissociation energy of 5.114 eV, NO with a dissociation energy of 6.503 eV, and N<sub>2</sub> dissociation 9.756 eV dissociate around 3500 K, 5000 K, and 7500 K, respectively. We note that the electro-neutrality is established between the electrons and the cations: Ag<sup>+</sup> and NO<sup>+</sup>, for temperatures lower than 6500 K. For temperatures higher than 6500 K, the electro-neutrality is established between the electrons and the cations: N<sup>+</sup>, O<sup>+</sup>, and Ag<sup>+</sup>. The numerical density of the electrons increases when the proportion of the vapor of the electrical contacts increases in the mixture, in particular for temperatures lower than 11,000 K.展开更多
Cu–15%NbC (volume fraction) powder was synthesized using the starting powders of Cu, Nb and graphite in a high energy vibratory disc mill for 7 h of milling under argon atmosphere. A composite sample and a C...Cu–15%NbC (volume fraction) powder was synthesized using the starting powders of Cu, Nb and graphite in a high energy vibratory disc mill for 7 h of milling under argon atmosphere. A composite sample and a Cu/NbC functionally graded material (FGM) sample were produced by using the two-step press and sintering at 900 °C for 1 h under vacuum. The microstructure and physical and mechanical properties of the specimens were investigated. The field emission scanning electron microscopy, energy dispersive X-ray and X-ray diffraction analysis confirmed the synthesis of the nanostructure matrix of 18–27 nm with the nanoparticles reinforcement of 42 nm after sintering, verifying the thermal stability of this composite at high temperature. The hardness of Cu–15%NbC was five times greater than that of the pure Cu specimen. The volume reduction of the sample after the wear test decreased in comparison with the pure Cu specimen. The electrical conductivity of the composite specimen decreased to 36.68% IACS. The FGM specimen exhibited high electrical conductivity corresponding to 75.83% IACS with the same hardness and wear properties as those of the composite sample on the composite surface. Thus, Cu/NbC FGM with good mechanical and electrical properties can be a good candidate for electrical contact applications.展开更多
New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling ...New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling tests, it is shown that the requirements of commercial use were met. It is proved that Ag ZnO composites could be used to substitute toxic Ag CdO on large load electrical contactors.展开更多
The oxidation properties of silver alloy powders and microstructures of oxidized powders have been investigated by thermo gravity analysis(TGA), scanning electron microscopy(SEM) and wave dispersive X ray spectrosco...The oxidation properties of silver alloy powders and microstructures of oxidized powders have been investigated by thermo gravity analysis(TGA), scanning electron microscopy(SEM) and wave dispersive X ray spectroscopy(WDEX). Ag Sn RE alloy powders have been oxidized completely at 610 ℃ within 60 min, with an external pure silver scale forming around each oxidized particle. It is useful to produce electrical contact composites. The excellent oxidation properties of Ag Sn RE alloy powders are attributed to the ideal microstructure of the oxidized powders.展开更多
Based on the electrical contact and arc theory, the experiments on contact resistance characteristics of electrical contacts are carried out, by analyzing the experimental results, some conclusions of contact resistan...Based on the electrical contact and arc theory, the experiments on contact resistance characteristics of electrical contacts are carried out, by analyzing the experimental results, some conclusions of contact resistance characteristics have been obtained in this paper.展开更多
According to the principle that fiber-like arrangement of reinforcing particles SnO2 paralleling to the direction of current is propitious to the electrical and mechanical performance of the electrical contact materia...According to the principle that fiber-like arrangement of reinforcing particles SnO2 paralleling to the direction of current is propitious to the electrical and mechanical performance of the electrical contact materials, we proposed and reported a novel precursor route used to prepare Ag/SnO,. electrical contact material with fiber- like arrangement of reinforcing nanoparticles. The mechanism for the formation of fiber-like arrangement of rein- forcing nanoparticles in Ag/SnO2 electrical contact material was also discussed. The as-prepared samples were char- acterized by means of scanning electron microscope (SEM), optical microscope (OM), energy-dispersive X-ray spectroscopy (EDX), MHV2000 microhardness test, and double bridge tester. The analysis showed that the as-prepared Ag/SnO,, electrical contact material with fiber-like arrangement of reinforcing nanoparticles exhibits a high elongation of 24 %, a particularly low electrical resistivity of 2.08 μΩ. cm, and low arcing energy, and thus has considerable technical, economical and environmental benefits.展开更多
Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order ...Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.展开更多
基金Project(2012QNZT003)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M521542)supported by the Postdoctoral Science Foundation of China+1 种基金Project(14JJ3014)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(BSh1202)supported by the Zhejiang Provincial Postdoctoral Scientific Research Foundation of China
文摘Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SEM) and a 3D optical profiler(3DOP). The results indicated that 3DOP could supply clearer and more detailed arc erosion morphology information. Arc erosion resistance of Ag/SnO_2(10) electrical contact material was the best and that of Ag/CuO(10) was the worst. Arc erosion morphology of Ag/MeO(10) electrical contact materials mainly included three different types. Arc erosion morphologies of Ag/ZnO(10) and Ag/SnO_2(10) electrical contact materials were mainly liquid splash and evaporation, and those of Ag/CuO(10) and Ag/CdO(10) were mainly material transfer from anode to cathode. Arc erosion morphology of Ag/SnO_2(6)In_2O_3(4) electrical contact materials included both liquid splash, evaporation and material transfer. In addition, the formation process and mechanism on arc erosion morphology of Ag/MeO(10) electrical contact materials were discussed.
文摘The sliding electrical contact behavior of AuAgCu brush on Au plating was investigated at various normal loads and sliding speeds.The contact voltage drop and electrical noise between the two brushes were measured and the resistance waveforms were recorded.The morphologies of the worn surfaces and wear debris of the brush and plating were observed.The results show that the contact voltage drop and electrical noise decrease with the addition of load whereas increase drastically with increasing sliding speed.With the electrical current in vacuum,the wear process of AuAgCu brush on Au plating involves adhesion,transfer of gold from the plating to the brush,rolling of wear debris between contact surfaces and arc-induced melt at the contact edge,and this gold-on-gold sliding electrical contact system is reliable within experiment period.
基金Barnbrook Systems, UK for their support of this work
文摘Arc erosion studies are conducted on AgSnO2 contact materials at different stages in the break operation. A resistive load arrangement is used with up to 42 V DC at 24 A and a constant contact opening velocity. The arc current is terminated at different stages as the arc is drawn between the contacts enabling a study of the arcing phenomena up to that point. Surface profiling of the contacts is conducted to determine the extent of erosion at the different stages as the arc is drawn. Spectral analysis is also conducted on the arc and then related to the extent of erosion. The results show that particular features occur at different stages as the arc is drawn. As the arc is initially established, it goes through an "Arc Generation" regime where the arc roots are small and immobile on both the anode and the cathode. Material transfer occurs mainly from anode to cathode. The spectral analysis indicates that Sn and O species dominate the arc followed by the Ag species. As the arc is drawn further and enters the "Arc Degeneration" regime, the anode undergoes significantly larger erosion than the cathode. Also, both contacts indicate that multiple arc roots have formed, which are highly mobile in the later stages of the discharge. The spectral analysis indicates that Ag and N species are in high concentrations compared to other species. The mechanisms of erosion and deposition are discussed in relation to the species within the arc discharge. For the complete break operation, it is found that the anode undergoes major erosion, and it is thought that the gaseous ions species do not dominate the arc under these conditions of short arcs and voltage 〈42 V to cause cathode erosion.
文摘A Ti^4+-doped nano-structured AgSnO2 material was prepared using sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that Ti^4+ cations are successfully doped into the crystal lattice of SnO2, and thus significantly improve the electrical conductivity of the sample. Furthermore, the coating of Ag on Ti^4+-doped SnO2 nano-sized particles enhances the surface wettability and enables the resulting AgSnO2 material to have better mechanical properties.
基金financially supported by the National Science Foundation of China-Yunnan United Foundation(No.U0837601)the National Natural Science Foundation of China(No.51267007)the Natural Science Foundation of Yunnan Province(No.2010CD126,No.2012FB195)
文摘A uniform transient temperature field model of electrical contacts operation was found by analyzing the process of closing arc constriction resistance Joule heat ~ breaking arc. Essential parameters of Ag/La2NiO4 electrical contact material for transient temperature field calculation were obtained through tests of electrical contact experimental instrument under 18 V DC in different cur- rents, other correlation experiments, and calculation anal- ysis. The finite element method was applied to solve the transient temperature field, and the features and distribution of the transient temperature field were obtained. The condition of material erosion and mass transfer can be forecasted by those calculation results. It is beneficial to research about the lifetime of Ag/La2NiO4 electrical material.
文摘mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.
基金supported by the National Natural Science Foundation of China (Nos. U1234202 and 51577158)the National Science Foundation for Distinguished Young Scholars of China (No. 51325704)the Fundamental Research Funds for the Central Universities (No. A0920502051505-19)
文摘A good contact between the pantograph and catenary is critically important for the working reliability of electric trains, while the basic understanding on the electrical contact evolution during the pantograph--catenary system working is still ambiguous so far. In this paper, the evolution of electric contact was studied in respects of the contact resistance, temperature rise, and microstructure variation, based on a home-made pantograph-catenary simulation system. Pure carbon strips and copper alloy contact wires were used, and the experimental electrical current, sliding speed, and normal force were set as 80 A, 30 km/h, and 80 N, respectively. The contact resistance presented a fluctuation without obvious regularity, concentrating in the region of 25 and 50 mf~. Temperature rise of the contact point experienced a fast increase at the first several minutes and finally reached a steady state. The surface damage of carbon trips in microstructure analysis revealed a complicated interaction of the sliding friction, joule heating, and arc erosion.
基金Project (No. 502048) supported by the Natural Science Foundation of Hebei Province, China
文摘Because of the different ways in which contact materials work, the basic requirements for silver metal oxide contact materials are different. They are anti-welded and anti-erosion when closed, anti-erosion when broken, and arc easily moved and have smaller contact resistance. In this paper, La2O3 is used as a stable oxide in contact material to replace CdO. A new type of Ag/SnO2-La2O3-Bi2O3 contact material is first obtained through using powder metallurgical method. Then electrical contact material parameter tester is used to test the electrical contact performance of the contact material. Through experiments, the arcing voltage and current curves, arcing energy curves, fusion power curves while broken and contact resistance while closed were obtained. Analysis of the results showed that the addition of La2O3 makes the contact material have the following advantages: smaller electrical wear, smaller arc energy, smaller contact resistance and arc is more easily extinguished.
基金supported by the Chinese Universities Scientific Fund(No.2011RC0603)
文摘The impact mechanism of environmental fac tors, such as corrosive atmosphere, on connector materials was investigated, and the porosity of gold plating was tested. Series of inspections and analytical research meth ods were introduced in this article. The surface morphology of specimens after corrosion was observed by stereoscopic microscope and scanning electron microscope. Chemical constitution was examined by Xray energy spectrum. The contact resistances were measured by fourpoint method. The experiment results show that after exposure to certain environment, the corrosion products, such as Cu20, Cu(NO3)2.3H20, and NiO, are observed on the surface of the specimens without gold coatings, whereas the corrosion products appear to have circleshaped spots on goldplating surface after corrosion test, which indicate that the gold plating has good corrosion protection. The porosity is increased with the increase of corrosion time for every kind of specimens gold plated, and the corrosion degree of gold plating specimens is decreased with the increase of the thickness of gold coatings. The static contact resistances of circleshaped spots appear higher contact resistance than normal value, which can reach to 2,000 mr2 nearly. It is found that the high and unstable contact resistance of the pore and products is more likely to cause contact failure.
基金supported by the National Natural Science Foundation of China (No.51601225)Hunan Provincial Natural Science Foundation,China (No.2020JJ5742)。
文摘Arc erosion behavior of Ag/Ni materials with different operation numbers was investigated by OM,3DOP and SEM.The results indicated that the arc erosion of Ag/10Ni electrical contact material fabricated by sintering−extrusion technology was more and more serious with the operation numbers increasing from 1000 to 40000.With the same operation numbers,the arc erosion on anode was more serious than that on cathode.Besides,the pores preferred to emerge around the arc effect spot during the first 10000 operations.And the morphology of the molten silver on cathode and anode was different due to the action of gravity and arc erosion.Furthermore,the relationships among arc energy,arc time,welding force,electric resistivity,temperature and mass change on contacts were discussed,which indicated that the mass loss on cathode was mainly caused by the fracture of molten bridge.
文摘The dynamic contact resistances of HH52P electromagnetic relays are measured under different ambient air tem- perature. Their diagnostic parameters are extracted and determined. It is found that the ambient air temperature obviously influ- ences some parameters. In order to research its influence on the electrical contact reliability of electromagnetic relay, the statistic analysis is applied to study the static contact resistance, the max of the dynamic contact resistance and the bounce time. It is found that the ambient air temperature regularly influences the three parameters. Thoroughly, the phenomenon is studied and analyzed in the point of material science so as to probe into the essential matter of it.
文摘Tungsten copper and molybdenum copper composites, with weight percent copper in the range of 20% - 40%, have been produced using the spark plasma sintering (SPS) technique. Other specimens having similar compositions were also developed using the conventional techniques of Liquid Phase Sintering (LPS) and Infiltration. Electrical conductivity measurements showed that the specimens produced by the SPS process had substantially higher levels of electrical conductivity than those produced by the other methods. Relative density measurements showed that the SPS specimens achieved very high densification, with relative densities in the range of 99.1% - 100%. On the other hand, the specimens produced by LPS and infiltration had relative densities in the range of 88% - 92% and 96% - 98% respectively. The superior conductivity of the SPS specimens has been attributed to the virtually full densification achieved by the process. The effect of porosity on electrical conductivity has been discussed and three standard models were assessed using results from porous sintered skeletons of pure tungsten and pure molybdenum.
基金supported by Shenzhen Key Laboratory of LED Packaging (No: ZDSY20120619141243215)
文摘A parallel method for the fabrication of metal contacts on single-walled carbon nanotube(SWNT)arrays was presented and the electrical contact property was evaluated by a SWNT-field effect transistor structure. Copper and gold contacts were fabricated on both semiconducting SWNTs and metallic SWNTs by using a maskless electrodeposition process. The SWNT array remained a p-type semiconductor after the electrodeposition. The contact resistance between SWNT array and microelectrodes was reduced more than 50% by the established copper contacts. The source-drain current of the carbon nanotube field-effect transistor(CNT-FET)structure can be further increased from 7.9 μA to 9.2 μA when the copper contacts were replaced by gold ones,which is probably due to the better contact property to SWNT of gold contacts with fine grain size.
文摘When the circuit breaker cuts the electric current, an electric arc is created between its electrodes. The success or failure of breaking the electric current by the circuit breaker depends strongly on the physico-chemical properties of the electric arc created, such as the composition of which depends on the material of the electrical contacts. In this work, we determine the equilibrium composition of the electric arc in the low voltage air circuit breaker with silver tin dioxide alloy contacts, in a temperature range from 500 K to 15,000 K and at atmospheric pressure. We use the Gibbs free energy minimization method and develop a computer code to determine the equilibrium composition of the created plasma. The analysis of the results obtained shows that O<sub>2</sub> particles with a dissociation energy of 5.114 eV, NO with a dissociation energy of 6.503 eV, and N<sub>2</sub> dissociation 9.756 eV dissociate around 3500 K, 5000 K, and 7500 K, respectively. We note that the electro-neutrality is established between the electrons and the cations: Ag<sup>+</sup> and NO<sup>+</sup>, for temperatures lower than 6500 K. For temperatures higher than 6500 K, the electro-neutrality is established between the electrons and the cations: N<sup>+</sup>, O<sup>+</sup>, and Ag<sup>+</sup>. The numerical density of the electrons increases when the proportion of the vapor of the electrical contacts increases in the mixture, in particular for temperatures lower than 11,000 K.
基金Sharif University of Technology for the financial support
文摘Cu–15%NbC (volume fraction) powder was synthesized using the starting powders of Cu, Nb and graphite in a high energy vibratory disc mill for 7 h of milling under argon atmosphere. A composite sample and a Cu/NbC functionally graded material (FGM) sample were produced by using the two-step press and sintering at 900 °C for 1 h under vacuum. The microstructure and physical and mechanical properties of the specimens were investigated. The field emission scanning electron microscopy, energy dispersive X-ray and X-ray diffraction analysis confirmed the synthesis of the nanostructure matrix of 18–27 nm with the nanoparticles reinforcement of 42 nm after sintering, verifying the thermal stability of this composite at high temperature. The hardness of Cu–15%NbC was five times greater than that of the pure Cu specimen. The volume reduction of the sample after the wear test decreased in comparison with the pure Cu specimen. The electrical conductivity of the composite specimen decreased to 36.68% IACS. The FGM specimen exhibited high electrical conductivity corresponding to 75.83% IACS with the same hardness and wear properties as those of the composite sample on the composite surface. Thus, Cu/NbC FGM with good mechanical and electrical properties can be a good candidate for electrical contact applications.
文摘New powder metallurgy processing routes were designed to manufacture Ag ZnO electrical contact composites. Their physical properties, electrical contact properties and microstructures were investigated. By modelling tests, it is shown that the requirements of commercial use were met. It is proved that Ag ZnO composites could be used to substitute toxic Ag CdO on large load electrical contactors.
文摘The oxidation properties of silver alloy powders and microstructures of oxidized powders have been investigated by thermo gravity analysis(TGA), scanning electron microscopy(SEM) and wave dispersive X ray spectroscopy(WDEX). Ag Sn RE alloy powders have been oxidized completely at 610 ℃ within 60 min, with an external pure silver scale forming around each oxidized particle. It is useful to produce electrical contact composites. The excellent oxidation properties of Ag Sn RE alloy powders are attributed to the ideal microstructure of the oxidized powders.
文摘Based on the electrical contact and arc theory, the experiments on contact resistance characteristics of electrical contacts are carried out, by analyzing the experimental results, some conclusions of contact resistance characteristics have been obtained in this paper.
基金National Major Scientific&Technological Achievement Transformation Project
文摘According to the principle that fiber-like arrangement of reinforcing particles SnO2 paralleling to the direction of current is propitious to the electrical and mechanical performance of the electrical contact materials, we proposed and reported a novel precursor route used to prepare Ag/SnO,. electrical contact material with fiber- like arrangement of reinforcing nanoparticles. The mechanism for the formation of fiber-like arrangement of rein- forcing nanoparticles in Ag/SnO2 electrical contact material was also discussed. The as-prepared samples were char- acterized by means of scanning electron microscope (SEM), optical microscope (OM), energy-dispersive X-ray spectroscopy (EDX), MHV2000 microhardness test, and double bridge tester. The analysis showed that the as-prepared Ag/SnO,, electrical contact material with fiber-like arrangement of reinforcing nanoparticles exhibits a high elongation of 24 %, a particularly low electrical resistivity of 2.08 μΩ. cm, and low arcing energy, and thus has considerable technical, economical and environmental benefits.
文摘Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.