Ignition energy is one of tbe important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electr...Ignition energy is one of tbe important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%-14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy.展开更多
In order to probe into the single ignition characteristics of mixed solid and liquid fuel, optical and electrical experinments on unconfined volume dispersion and single ignition of few dosage of ternary fuel mixture ...In order to probe into the single ignition characteristics of mixed solid and liquid fuel, optical and electrical experinments on unconfined volume dispersion and single ignition of few dosage of ternary fuel mixture are successfully done. Experimental results show that cloud detonation is distinguished from explosion of trinitrotoluene charge. The single ignition process of mixed fuel containing aluminum powder(Al), propylene oxide (PO) and explosive (TNT) can be divided into four stages, the overpressure within its explosion field first increases, then decays with increase of distance. Explosion effects can be enhanced with adding proper trinitrotoluene into fuel mixture, the optimized ratio is m (Al) : m (PO): m (TNT) - 55:35: 10. The overpressure of binary mixed fuel containing Al and TNT decays like trinitrotoluene charge with increase of distance, but its value is higher than the trinitrotoluene charge's in the same mass at longer distance. The continual action time of plus overpressure during cloud detonation reaches magnitude of 10 ms and is about 100 times longer than the trinitrotoluene charge' s.展开更多
Based on the analysis of weakness on the safety of traditional electric detonators, a BJ-l safety electric detonator initiatingsystem and its corresponding safe examination technique were successfully developed. By le...Based on the analysis of weakness on the safety of traditional electric detonators, a BJ-l safety electric detonator initiatingsystem and its corresponding safe examination technique were successfully developed. By leading false foot wires and taking advantageof the transmitting frequency band of Mo-Zn ferrite, detonators in this new system can completely impede the direct induction of outsidecrosstalk that may cause casual firing in the ordinary as well as eleclromagnetic ones. Possible causality by lightning was discussed. Results are presented, of its safety tests on resistance to direct and alternating current, electrostatic, and crosstalk induced by damp leakagein saturated salty water.展开更多
In the present work it is found that the pyrotechnic composition VS⁃2 can be initiated with flash lamps IFC⁃500 and EVIS.VS⁃2 pyrotechnic composition contains 90%of mercury(Ⅱ)5⁃hydrazinotetrazolate perchlorate and 10...In the present work it is found that the pyrotechnic composition VS⁃2 can be initiated with flash lamps IFC⁃500 and EVIS.VS⁃2 pyrotechnic composition contains 90%of mercury(Ⅱ)5⁃hydrazinotetrazolate perchlorate and 10%of optically trans⁃parent copolymer of 2⁃methyl⁃5⁃vinyltetrazole and methacrylic acid(PVMT).We have found that the flash lamps make it possi⁃ble to initiate combustion of VS⁃2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high,and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm^(-2)and 90 mg·cm^(-2),showing ignition delay times 10μs and 3μs,respectively.We also measured detonation velocities for VS⁃2 composition film charges,which were 4375-4505 m·s^(-1)(of the charge being surface mass 60 mg·cm^(-2))and 4221-4281 m·s^(-1)(of the charge be⁃ing surface mass 90 mg·cm^(-2))and their blasting action on the aluminum plate.The depths of the normal shock wave imprints at the charge⁃barrier interface were 0.6-0.7 mm(for surface mass of the film charges 60 mg·cm^(-2))and 1.2-1.3 mm(for surface mass of the film charges 90 mg·cm^(-2))展开更多
Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant...Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11572044)the National Key Research and Development Program of China(Grant No.2017YFC0804705)
文摘Ignition energy is one of tbe important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%-14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy.
文摘In order to probe into the single ignition characteristics of mixed solid and liquid fuel, optical and electrical experinments on unconfined volume dispersion and single ignition of few dosage of ternary fuel mixture are successfully done. Experimental results show that cloud detonation is distinguished from explosion of trinitrotoluene charge. The single ignition process of mixed fuel containing aluminum powder(Al), propylene oxide (PO) and explosive (TNT) can be divided into four stages, the overpressure within its explosion field first increases, then decays with increase of distance. Explosion effects can be enhanced with adding proper trinitrotoluene into fuel mixture, the optimized ratio is m (Al) : m (PO): m (TNT) - 55:35: 10. The overpressure of binary mixed fuel containing Al and TNT decays like trinitrotoluene charge with increase of distance, but its value is higher than the trinitrotoluene charge's in the same mass at longer distance. The continual action time of plus overpressure during cloud detonation reaches magnitude of 10 ms and is about 100 times longer than the trinitrotoluene charge' s.
文摘Based on the analysis of weakness on the safety of traditional electric detonators, a BJ-l safety electric detonator initiatingsystem and its corresponding safe examination technique were successfully developed. By leading false foot wires and taking advantageof the transmitting frequency band of Mo-Zn ferrite, detonators in this new system can completely impede the direct induction of outsidecrosstalk that may cause casual firing in the ordinary as well as eleclromagnetic ones. Possible causality by lightning was discussed. Results are presented, of its safety tests on resistance to direct and alternating current, electrostatic, and crosstalk induced by damp leakagein saturated salty water.
文摘In the present work it is found that the pyrotechnic composition VS⁃2 can be initiated with flash lamps IFC⁃500 and EVIS.VS⁃2 pyrotechnic composition contains 90%of mercury(Ⅱ)5⁃hydrazinotetrazolate perchlorate and 10%of optically trans⁃parent copolymer of 2⁃methyl⁃5⁃vinyltetrazole and methacrylic acid(PVMT).We have found that the flash lamps make it possi⁃ble to initiate combustion of VS⁃2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high,and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm^(-2)and 90 mg·cm^(-2),showing ignition delay times 10μs and 3μs,respectively.We also measured detonation velocities for VS⁃2 composition film charges,which were 4375-4505 m·s^(-1)(of the charge being surface mass 60 mg·cm^(-2))and 4221-4281 m·s^(-1)(of the charge be⁃ing surface mass 90 mg·cm^(-2))and their blasting action on the aluminum plate.The depths of the normal shock wave imprints at the charge⁃barrier interface were 0.6-0.7 mm(for surface mass of the film charges 60 mg·cm^(-2))and 1.2-1.3 mm(for surface mass of the film charges 90 mg·cm^(-2))
基金supported by the National Natural Science Foundation of China (No. 52176097)。
文摘Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent.