In the new competitive environment of the electricity market, risk analysis is a powerful tool to guide investors under both contract uncertainties and energy prices of the spot market. Moreover, simulation of spot pr...In the new competitive environment of the electricity market, risk analysis is a powerful tool to guide investors under both contract uncertainties and energy prices of the spot market. Moreover, simulation of spot price scenarios and evaluation of energy contracts performance, are also necessary to the decision maker, and in particular to the trader to foresee opportunities and possible threats in the trading activity. In this context, computational systems that allow what-if analysis, involving simulation of spot price, contract portfolio optimization and risk evaluation are rather important. This paper proposes a decision support system not only for solving the problem of contracts portfolio optimization, by using linear programming, but also to execute risks analysis of the contracts portfolio performance, with VaR and CVaR metrics. Realistic tests have demonstrated the efficiency of this system.展开更多
Furnace area is regarded as looper between casting and hot rolling,which is very important for material flow balance and production organization as well as temperature regulation etc.In particular,when dealing with en...Furnace area is regarded as looper between casting and hot rolling,which is very important for material flow balance and production organization as well as temperature regulation etc.In particular,when dealing with energy saving and emission reduction and heating quality improving,pre;eating furnace is paid more attention.The radical target for preheating furnace is to transfer heating energy at the least cost. As we know,the preheating furnace is a dissipation system to obey conservation of energy law,that is to say that input energy always equals to output energy,in the meantime,the whole energy consuming is not reversible.Therefore increasing the efficiency of using energy is uppermost.In this paper,heating transfer efficiency is analysed and mathematical expression is given based on conservation of energy law.Typical optimal methods to improve preheating furnace transfer efficiency coming from foreign factories are presented.According to these methods,every furnace zone temperatures as control variable,target discharging temperature and temperature difference in slab thickness and the temperature between neighbouring zones as well as zone temporary temperature as restrictions,minimal energy consuming as optimizing target.Baosteel preheating furnace model structure and the complicated mapping relation of control parameter set and state set and aim set are presented.Important basic models in the preheating furnace model system are analysed including temperature tracking model and temperature forecasting model and discharging pacing model and slab heating curve.First slab temperature model structure and its peripheric parameter are introduced;second two pacing models are given including timing pacing mode using fixed discharging interval and mill pacing control mode using mill rolling pacing while Baosteel pacing forecasting model using long term and short term forecasting mode) is given;third a heating curve mathematical model considering heating quality and rolling pace and energy consuming is presented;in the end summary is done and the future way is lighted.Baosteel heating model including slab and billet and steel ingot have been developed,the actual applications show a good effect.The future woks include working procedure saving energy and system saving energy considering " Oder and rule" to achieve system harmony and rhythmization.Baosteel Blooming furnaces scheduling system is very useful for smooth production and saving energy.展开更多
混合储能系统具有储能容量大、调节能力强等优点,有助于提高综合能源系统(integrated energy system,IES)的需求响应能力。首先,构建了一种电-氢-热混合储能系统(electric-hydrogen-thermal hybrid energy storage system,EHT-HESS),其...混合储能系统具有储能容量大、调节能力强等优点,有助于提高综合能源系统(integrated energy system,IES)的需求响应能力。首先,构建了一种电-氢-热混合储能系统(electric-hydrogen-thermal hybrid energy storage system,EHT-HESS),其中采用电解槽(electrolytic cell,EC)、蒸气重整反应(steam methane reforming,SMR)装置、储氢、热电联产氢燃料电池(hydrogen fuel cell,HFC)设备,实现电、气向氢能的转换,以及以氢能作为中间模态的“制氢-储氢-放氢/电/热”功能。其次,建立考虑EHT-HESS的IES需求响应策略优化模型,其中考虑IES响应电价和气价,同时根据富余风电量,进行购电、购气、用电、用热、用氢等策略决策的综合需求响应(integrated demand response,IDR)行为;并采用信息间隙决策理论(information gap decision theory,IGDT)计入概率分布未知的风电严重不确定性,采用基于综合范数的分布鲁棒优化(distributionally robust optimization,DRO)方法计入概率分布不完备的电价严重不确定性。最后,算例验证了模型和方法的合理性及有效性,并表明IES装设热电联产HFC构建EHT-HESS可实现氢能向电能与热能的转换,有助于增加风电消纳量,增加IDR决策的鲁棒性。展开更多
An operating schedule of the parallel electric arc furnaces(EAFs)considering both productivity and energy related criteria is investigated.A mathematical model is established to minimize the total completion time and ...An operating schedule of the parallel electric arc furnaces(EAFs)considering both productivity and energy related criteria is investigated.A mathematical model is established to minimize the total completion time and the total electricity cost.This problem is proved to be an NP-hard problem,and an effective solution algorithm,longest processing time-genetic(LPT-gene)algorithm,is proposed.The impacts of varied processing energy consumption and electricity price on the optimal schedules are analyzed.The integrated influence of the different weight values and the variation between the peak price and the trough price on the optimal solution is studied.Computational experiments illustrate that considering the energy consumption costs in production has little influence on makespan;the computational performance of the proposed longest processing time-genetic algorithm is better than the genetic algorithm(GA)in the issue to be studied;considerable reductions in the energy consumption costs can be achieved by avoiding producing during high-energy price periods and reducing the machining energy consumption difference.The results can be a guidance for managers to improve productivity and to save energy costs under the time-of-use tariffs.展开更多
文摘In the new competitive environment of the electricity market, risk analysis is a powerful tool to guide investors under both contract uncertainties and energy prices of the spot market. Moreover, simulation of spot price scenarios and evaluation of energy contracts performance, are also necessary to the decision maker, and in particular to the trader to foresee opportunities and possible threats in the trading activity. In this context, computational systems that allow what-if analysis, involving simulation of spot price, contract portfolio optimization and risk evaluation are rather important. This paper proposes a decision support system not only for solving the problem of contracts portfolio optimization, by using linear programming, but also to execute risks analysis of the contracts portfolio performance, with VaR and CVaR metrics. Realistic tests have demonstrated the efficiency of this system.
文摘Furnace area is regarded as looper between casting and hot rolling,which is very important for material flow balance and production organization as well as temperature regulation etc.In particular,when dealing with energy saving and emission reduction and heating quality improving,pre;eating furnace is paid more attention.The radical target for preheating furnace is to transfer heating energy at the least cost. As we know,the preheating furnace is a dissipation system to obey conservation of energy law,that is to say that input energy always equals to output energy,in the meantime,the whole energy consuming is not reversible.Therefore increasing the efficiency of using energy is uppermost.In this paper,heating transfer efficiency is analysed and mathematical expression is given based on conservation of energy law.Typical optimal methods to improve preheating furnace transfer efficiency coming from foreign factories are presented.According to these methods,every furnace zone temperatures as control variable,target discharging temperature and temperature difference in slab thickness and the temperature between neighbouring zones as well as zone temporary temperature as restrictions,minimal energy consuming as optimizing target.Baosteel preheating furnace model structure and the complicated mapping relation of control parameter set and state set and aim set are presented.Important basic models in the preheating furnace model system are analysed including temperature tracking model and temperature forecasting model and discharging pacing model and slab heating curve.First slab temperature model structure and its peripheric parameter are introduced;second two pacing models are given including timing pacing mode using fixed discharging interval and mill pacing control mode using mill rolling pacing while Baosteel pacing forecasting model using long term and short term forecasting mode) is given;third a heating curve mathematical model considering heating quality and rolling pace and energy consuming is presented;in the end summary is done and the future way is lighted.Baosteel heating model including slab and billet and steel ingot have been developed,the actual applications show a good effect.The future woks include working procedure saving energy and system saving energy considering " Oder and rule" to achieve system harmony and rhythmization.Baosteel Blooming furnaces scheduling system is very useful for smooth production and saving energy.
基金The National Natural Science Foundation of China(No.71271054,71571042,71501046)the Fundamental Research Funds for the Central Universities(No.2242015S32023)the Scientific Research Innovation Project for College Graduates in Jiangsu Province(No.CXZZ12_0133)
文摘An operating schedule of the parallel electric arc furnaces(EAFs)considering both productivity and energy related criteria is investigated.A mathematical model is established to minimize the total completion time and the total electricity cost.This problem is proved to be an NP-hard problem,and an effective solution algorithm,longest processing time-genetic(LPT-gene)algorithm,is proposed.The impacts of varied processing energy consumption and electricity price on the optimal schedules are analyzed.The integrated influence of the different weight values and the variation between the peak price and the trough price on the optimal solution is studied.Computational experiments illustrate that considering the energy consumption costs in production has little influence on makespan;the computational performance of the proposed longest processing time-genetic algorithm is better than the genetic algorithm(GA)in the issue to be studied;considerable reductions in the energy consumption costs can be achieved by avoiding producing during high-energy price periods and reducing the machining energy consumption difference.The results can be a guidance for managers to improve productivity and to save energy costs under the time-of-use tariffs.