The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cam...Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios.展开更多
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction...There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system.展开更多
In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,inc...In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the ele...Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.展开更多
BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction an...BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity.展开更多
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S...Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.展开更多
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro...The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).展开更多
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote...We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array.展开更多
Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on pho...Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.展开更多
Rare earth sesquisulfides have drawn growing attention in photoelectric applications because of their excellent electronic and photoelectric properties upon compression.We investigate the structural,electrical,and pho...Rare earth sesquisulfides have drawn growing attention in photoelectric applications because of their excellent electronic and photoelectric properties upon compression.We investigate the structural,electrical,and photoelectric properties of Tm_(2)S_(3) under high pressure through electrical impedance,UV-vis absorption,Raman spectroscopy,x-ray diffraction,and photoelectric measurements.It is found that δ-Tm_(2)S_(3) transforms into high-pressure𝛼-phase around 5GPa,accompanied by a substantial reduction in atomic distance,bandgap,and resistivity.Consequently,the photocurrent density and responsivity of Tm_(2)S_(3) exhibit dramatic increase behavior,achieving five orders of magnitude enhancement in α-phase compared with the initial δ-Tm_(2)S_(3).Moreover,α-phase maintains a high photocurrent responsivity of three orders of magnitude after unloading.This work demonstrates significant enhancement of the photoelectric properties of Tm_(2)S_(3) by applying pressure,which paves the way for improving the performance of future photoelectric devices.展开更多
Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen ...Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.展开更多
The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian O...The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian Ocean from the Early Neoproterozoic(ca.1000 Ma)to the Late Paleoproterozoic(ca.250 Ma)process.The Beishan Block is located in the middle and southern edge of the Central Asian orogenic belt,at the intersection of the Tarim plate,the Siberian Plate and the Kazakhstan Plate.展开更多
The green and low carbon transition and development of the electricity industry is the most crucial task in realizing the“dual-carbon target”,and it is urgent to explore the incentive and subsidy mechanism to promot...The green and low carbon transition and development of the electricity industry is the most crucial task in realizing the“dual-carbon target”,and it is urgent to explore the incentive and subsidy mechanism to promote green electricity consumption and the cost-sharing strategy of carbon reduction,to alleviate the pressure of carbon abatement cost of each subject of the electricity supply chain.Against this background,this paper takes into account the low-carbon subsidies provided by the government and the incentive subsidies for users,and studies the optimal decision-making of each subject in the electricity supply chain,so that each of them can obtain the optimal profit and achieve carbon emission reduction at the same time.Firstly,taking into account the direct power purchase mode of large users and the electricity-selling companies emerging after the reform of the power sales side,we have established a cooperative mechanism for sharing the cost of carbon emission reduction in the electricity supply chain and clarified the relationship between the supply and demand of electricity among the main parties.Subsequently,considering government low-carbon subsidies and user incentive subsidies,the optimal decisionmaking model is established under two scenarios of decentralized and centralized cooperative games in the supply chain,respectively,with the objective of maximizing profits and carbon reduction rates.Solving for the optimal proportion of carbon abatement costs shared by each participant in the electricity supply chain in achieving game equilibrium.Finally,we analyze the role of the government’s low-carbon subsidies,users’incentive subsidies,and other factors on the profit and carbon reduction effect of the electricity industry through the example analysis and further analyze the impact of carbon abatement cost-sharing measures to provide recommendations for the electricity industry to realize low-carbon abatement and make decisions.展开更多
The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patte...The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patterning technology for single-layer 2D materials is critical for assembling nanodevices.Demonstrated here is a nanomachining technique using electrical breakdown by an AFM tip to fabricate nanopores,nanostrips,and other nanostructures on demand.This can be achieved by voltage scanning or applying a constant voltage while moving the tip.By measuring the electrical current,the formation process on single-layer materials was shown quantitatively.The present results provide evidence of successful pattern fabrication on single-layer MoS2,boron nitride,and graphene,although further confirmation is still needed.The proposed method holds promise as a general nanomachining technology for the future.展开更多
Electrical contact materials are increasingly widely used,but the existing electric contact lubricants still have lots of room for improvement,such as anti-wear performance and lubrication life.Due to the excellent el...Electrical contact materials are increasingly widely used,but the existing electric contact lubricants still have lots of room for improvement,such as anti-wear performance and lubrication life.Due to the excellent electrical and lubrication properties,graphene shows great potential in lubricating the sliding electrical contact interface,but there is a lack of relevant research.Some researchers have studied the lubrication performance of graphene between the gold-coated/TiN-coated friction pair at an ultra-low current.However,the lubrication performance of graphene on more widely used electrical contact materials such as copper and its alloys under larger and more commonly used current or voltage conditions has not been reported.In this paper,we study the lubrication performance of graphene in the copper and its alloys sliding electrical contact interface under usual parameters,which is explored through four aspects:different substrates-copper and brass,different test methods-constant voltage and constant current,different normal loads and durability test.The experiments demonstrate that graphene can significantly reduce the friction and wear on brass and copper under the above test methods and parameters,with low contact resistance at the same time.Our work is expected to provide a new lubricant for electrical contact materials and contribute to enriching the tribological theory of graphene.展开更多
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ...High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.展开更多
Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-qual...Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.展开更多
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
基金supported by the Ningxia Key Research and Development Program(Talent Introduction Special Project)Project(2022YCZX0013)North Minzu University 2022 School-Level Scientific Research Platform“Digital Agriculture Enabling Ningxia Rural Revitalization Innovation Team”(2022PT_S10)+1 种基金Yinchuan City University-Enterprise Joint Innovation Project(2022XQZD009)Ningxia Key Research and Development Program(Key Project)Project(2023BDE02001).
文摘Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios.
文摘There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system.
基金supported by the National Key Research and Development Plan of China(2022YFD2001201)the Beijing Postdoctoral Research Foundation(2023-ZZ-112)+1 种基金the National Natural Science Foundation of China(52272444)the Natural Science Foundation of Jiangsu Province(BK20230548).
文摘In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University(Grant No.2020-520000-83-01-324061)the National Natural Science Foundation of China(Grant No.61264004)the High-level Creative Talent Training Program in Guizhou Province of China(Grant No.[2015]4015).
文摘Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.
文摘BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity.
基金supported by the Fundamental Research Funds for the Central Universities(No.20CX05005A)the Major Scientific and Technological Projects of CNPC(No.ZD2019-184-001)+2 种基金the PetroChina Innovation Foundation(No.2018D-5007-0214)the Shandong Provincial Natural Science Foundation(No.ZR2019MEE095)the National Natural Science Foundation of China(No.42174141).
文摘Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),through the Discovery Grant Program (RGPIN-2018-06725)the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651)+2 种基金the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488)supported by funding from the Canada First Research Excellence Fund as part of the University of Alberta’s Future Energy Systems research initiative (FES-T06-Q03)supported by the Chinese Scholarship Council (CSC)(Grant No. 202006450027).
文摘The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).
基金This research is based on results obtained from Project JPNP07015the New Energy and Industrial Technology Development Organization(NEDO)and is also partly supported by the Japan Society for the Promotion of Science KAKENHI Program(Grant No.21K18795)。
文摘We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array.
基金supported by The Norwegian Research CouncilDepartment of Ophthalmology,Oslo University Hospital,Oslo,Norway(to TPU)+10 种基金Department of Medical Biochemistry,Oslo University Hospital,Oslo,Norway(to TPU)The Norwegian Association for the Blind and Partially Sighted(to TPU)The Ministry of Science and Technology of Taiwan,China MOST 105-2917-I-002-031,MOST 109-2917-I-564-032(to KC)The Scientific and Technological Research Council of Turkiye-TUBITAK(to KG)BrightFocus Foundation(to KSC)the Massachusetts Lions Foundation(to KSC)National Eye Institute Grant EY031696(to DFC)Harvard NeuroDiscovery Center Grant(to DFC)Department of Defense(USA)HT9425-23-1-1045(to DFC and AL)Core Grant for Vision Research from NIH/NEI to the Schepens Eye Research Institute(P30EY003790)South-Eastern Norway Regional Health Authority and the Norwegian Society of the Blind(to TPU).
文摘Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.
基金mainly supported by the National Natural Science Foundation of China(Grant Nos.52288102,52090020,52022089,and 52372261)。
文摘Rare earth sesquisulfides have drawn growing attention in photoelectric applications because of their excellent electronic and photoelectric properties upon compression.We investigate the structural,electrical,and photoelectric properties of Tm_(2)S_(3) under high pressure through electrical impedance,UV-vis absorption,Raman spectroscopy,x-ray diffraction,and photoelectric measurements.It is found that δ-Tm_(2)S_(3) transforms into high-pressure𝛼-phase around 5GPa,accompanied by a substantial reduction in atomic distance,bandgap,and resistivity.Consequently,the photocurrent density and responsivity of Tm_(2)S_(3) exhibit dramatic increase behavior,achieving five orders of magnitude enhancement in α-phase compared with the initial δ-Tm_(2)S_(3).Moreover,α-phase maintains a high photocurrent responsivity of three orders of magnitude after unloading.This work demonstrates significant enhancement of the photoelectric properties of Tm_(2)S_(3) by applying pressure,which paves the way for improving the performance of future photoelectric devices.
文摘Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.
基金granted by the Geological Survey Project of the China Geological Survey for Regional Geophysical Survey in Beishan and Adjacent Areas(Grant No.DD20230254)。
文摘The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian Ocean from the Early Neoproterozoic(ca.1000 Ma)to the Late Paleoproterozoic(ca.250 Ma)process.The Beishan Block is located in the middle and southern edge of the Central Asian orogenic belt,at the intersection of the Tarim plate,the Siberian Plate and the Kazakhstan Plate.
基金supported by the Project of Philosophy and Social Science Foundation of Shanghai,China(Grant No.2020BGL011).
文摘The green and low carbon transition and development of the electricity industry is the most crucial task in realizing the“dual-carbon target”,and it is urgent to explore the incentive and subsidy mechanism to promote green electricity consumption and the cost-sharing strategy of carbon reduction,to alleviate the pressure of carbon abatement cost of each subject of the electricity supply chain.Against this background,this paper takes into account the low-carbon subsidies provided by the government and the incentive subsidies for users,and studies the optimal decision-making of each subject in the electricity supply chain,so that each of them can obtain the optimal profit and achieve carbon emission reduction at the same time.Firstly,taking into account the direct power purchase mode of large users and the electricity-selling companies emerging after the reform of the power sales side,we have established a cooperative mechanism for sharing the cost of carbon emission reduction in the electricity supply chain and clarified the relationship between the supply and demand of electricity among the main parties.Subsequently,considering government low-carbon subsidies and user incentive subsidies,the optimal decisionmaking model is established under two scenarios of decentralized and centralized cooperative games in the supply chain,respectively,with the objective of maximizing profits and carbon reduction rates.Solving for the optimal proportion of carbon abatement costs shared by each participant in the electricity supply chain in achieving game equilibrium.Finally,we analyze the role of the government’s low-carbon subsidies,users’incentive subsidies,and other factors on the profit and carbon reduction effect of the electricity industry through the example analysis and further analyze the impact of carbon abatement cost-sharing measures to provide recommendations for the electricity industry to realize low-carbon abatement and make decisions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12075191,12388101,and 12241201)the Fundamental Research Funds for the Central Universities(Grant No.D5000230120)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2023-JC-YB-541).
文摘The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patterning technology for single-layer 2D materials is critical for assembling nanodevices.Demonstrated here is a nanomachining technique using electrical breakdown by an AFM tip to fabricate nanopores,nanostrips,and other nanostructures on demand.This can be achieved by voltage scanning or applying a constant voltage while moving the tip.By measuring the electrical current,the formation process on single-layer materials was shown quantitatively.The present results provide evidence of successful pattern fabrication on single-layer MoS2,boron nitride,and graphene,although further confirmation is still needed.The proposed method holds promise as a general nanomachining technology for the future.
基金supported by the National Natural Science Foundation of China(No.12302127)Natural Science Foundation of Chongqing,China(No.cstc2021jcyj-msxmX0044)+1 种基金the Tribology Science Fund of State Key Laboratory of Tribology of China(No.SKLTKF20B02)the Experimental Technology Research Project of Southwest University(No.SYJ2023003).
文摘Electrical contact materials are increasingly widely used,but the existing electric contact lubricants still have lots of room for improvement,such as anti-wear performance and lubrication life.Due to the excellent electrical and lubrication properties,graphene shows great potential in lubricating the sliding electrical contact interface,but there is a lack of relevant research.Some researchers have studied the lubrication performance of graphene between the gold-coated/TiN-coated friction pair at an ultra-low current.However,the lubrication performance of graphene on more widely used electrical contact materials such as copper and its alloys under larger and more commonly used current or voltage conditions has not been reported.In this paper,we study the lubrication performance of graphene in the copper and its alloys sliding electrical contact interface under usual parameters,which is explored through four aspects:different substrates-copper and brass,different test methods-constant voltage and constant current,different normal loads and durability test.The experiments demonstrate that graphene can significantly reduce the friction and wear on brass and copper under the above test methods and parameters,with low contact resistance at the same time.Our work is expected to provide a new lubricant for electrical contact materials and contribute to enriching the tribological theory of graphene.
基金Project supported by the National Natural Science Foundation of China (Grant No.12064034)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China (Grant No.2020GKLRLX08)+2 种基金the Natural Science Foundation of Ningxia Hui Auatonomous Region,China (Grant Nos.2022AAC03643,2022AAC03117,and 2018AAC03029)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China (Grant No.2022BDE03006)the Natural Science Project of the Higher Education Institutions of Ningxia Hui Autonomous Region,China (Grant No.13-1069)。
文摘High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.
基金This research was funded by the National Nature Sciences Foundation of China(Grant No.42250410321).
文摘Missing value is one of the main factors that cause dirty data.Without high-quality data,there will be no reliable analysis results and precise decision-making.Therefore,the data warehouse needs to integrate high-quality data consistently.In the power system,the electricity consumption data of some large users cannot be normally collected resulting in missing data,which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate.For the problem of missing electricity consumption data,this study proposes a group method of data handling(GMDH)based data interpolation method in distribution power networks and applies it in the analysis of actually collected electricity data.First,the dependent and independent variables are defined from the original data,and the upper and lower limits of missing values are determined according to prior knowledge or existing data information.All missing data are randomly interpolated within the upper and lower limits.Then,the GMDH network is established to obtain the optimal complexity model,which is used to predict the missing data to replace the last imputed electricity consumption data.At last,this process is implemented iteratively until the missing values do not change.Under a relatively small noise level(α=0.25),the proposed approach achieves a maximum error of no more than 0.605%.Experimental findings demonstrate the efficacy and feasibility of the proposed approach,which realizes the transformation from incomplete data to complete data.Also,this proposed data interpolation approach provides a strong basis for the electricity theft diagnosis and metering fault analysis of electricity enterprises.