In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k ...In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.展开更多
Information from the brain travels back and forth along peripheral nerves in the form of electrical impulses generated by neurons and these impulses have repetitive patterns. Schwann cells in peripheral nerves receive...Information from the brain travels back and forth along peripheral nerves in the form of electrical impulses generated by neurons and these impulses have repetitive patterns. Schwann cells in peripheral nerves receive molecular signals from axons to coordinate the process of myelination. There is evidence, however,that non-molecular signals play an important role in myelination in the form of patterned electrical impulses generated by neuronal activity. The role of patterned electrical impulses has been investigated in the literature using co-cultures of neurons and myelinating cells. The co-culturing method, however, prevents the uncoupling of the direct effect of patterned electrical impulses on myelinating cells from the indirect effect mediated by neurons. To uncouple these effects and focus on the direct response of Schwann cells,we developed an in vitro model where an electroconductive carbon fiber acts as an artificial axon. The fiber provides only the biophysical characteristics of an axon but does not contribute any molecular signaling.In our "suspended wire model", the carbon fiber is suspended in a liquid media supported by a 3D printed scaffold. Patterned electrical impulses are generated by an Arduino 101 microcontroller. In this study, we describe the technology needed to set-up and eventually replicate this model. We also report on our initial in vitro tests where we were able to document the adherence and ensheath of human Schwann cells to the carbon fiber in the presence of patterned electrical impulses(hSCs were purchased from ScienCell Research Laboratories, Carlsbad, CA, USA; ScienCell fulfills the ethic requirements, including donor's consent). This technology will likely make feasible to investigate the response of Schwann cells to patterned electrical impulses in the future.展开更多
Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in ...Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in order to compare the aging phenome- non under multi-stress conditions, additional EPR cable samples were aged by rated AC voltage and current with switching impulses superimposed. We used measurements of partial discharge parameters to monitor the cables’ conditions during their aging process, and the AC breakdown voltages measurement to evaluate the cables after aging. Moreover, the Fourier transform infrared (FTIR) spectroscopy measurements revealed the changes of insulation materials after aging. The measurement results confirm that the accelerated aging of cable samples had taken place. The impacts of each individual aging factor are shown through the selected measurements and comparison. The study also helps to assess the reliability of the XLPE and EPR cables under similar condition while serving in power systems.展开更多
The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency ...The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency with the secondary electron emission coefficient (δ) of the corona electrode as an intermediary: when the impulse voltage power ( W ) was fixed the corona electrode material with higher δ could induce higher decomposition efficiency. In these experiments, wolfram electrode which has the highest δ has really induced the highest decomposition efficiency.展开更多
Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To...Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10^th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Com- pared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord.展开更多
Transient over voltages due to lightning and switching surges cause steep build-up of voltage on transmission lines and other electrical apparatus,like circuit breakers,transformers,insulators etc.Therefore it is nece...Transient over voltages due to lightning and switching surges cause steep build-up of voltage on transmission lines and other electrical apparatus,like circuit breakers,transformers,insulators etc.Therefore it is necessary for the GIS also to withstand such voltages without breakdown of Insulation.The system has to be tested under these conditions.Usually the GIS system operates on power frequency.Lightning Impulse Voltage of 1050 kV and Switching Impulse Voltage of 750 kV superimposed on Power frequency voltages of 75 kV,100 kV and 132 kV are applied to Single Phase Gas Insulated Busduct and the maximum movement of Aluminum,Copper and Silver particles is determined.The movement patterns are also determined with and without Monte Carlo Simulation for movement of particle in axial and radial directions.The results show that there is a sudden jump in the movement at the application of impulse on sine wave.This is because of high magnitude voltage of 1050 kV during 1.2/50 μs.Similar movement patterns of reduced maximum movement is observed for Switching Impulse superimposed on sine wave.The results are presented and analyzed.展开更多
Energy especially for rapid electricity consumption increasing is an obvious problem during the process of urbanization and economic growth. It is also an important research field to explore intrinsic regular pattern ...Energy especially for rapid electricity consumption increasing is an obvious problem during the process of urbanization and economic growth. It is also an important research field to explore intrinsic regular pattern of electricity consumption and provide solving approaches. Firstly, this paper studies the relationship between electricity consumption and urbanization via GMM model by stages and regions. The results show that the most obvious stage of urbanization on electricity consumption is the stage between 1992-2000. The residents' income has an evident infl uence on electricity consumption of east region and industry also has generated stronger driving force in central and west regions. Then the paper analyzes the relationship between urbanization and electricity consumption by impulse function and gray correlation, and the variables of urbanization and industrialization both have various positive impulse effect. Estimating the gray correlation, central provinces with high population density and large shares of industry have high correlation degree in urbanization and electricity consumption.展开更多
Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action pot...Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action potential, which allows the propagation of such nerve impulses as electrical signals. Such measurements should guide them to a logical explanation of the nerve impulses as electric charges driven by the measured action potential. However, such logical conclusion, or explanation, is ignored due to a wrong definition of the flow of electric charges as a flow of electrons that cannot pass through neural networks. According to recent studies, electric charges are properly defined as electromagnetic (EM) waves whose energy is expressed as the product of its propagating electric potential times their entropy flow which is adhered to the flow of such energy. Such definition matches the logical conclusion of the nerve impulses as electric charges, as previously explained, and defines the entropy of the neural network, measured by Ammeters, in Watt or Joule/Volt. The measured entropy represents a neurodiagnostic property of the neural networks that measures its capacity to allow the flow of energy per unit action potential. Theoretical verification of the innovative definition of nerve impulses is presented by following an advanced entropy approach. A proper review of the machine records of the stimulating electric charges, used in the diagnosis of the neural networks, and the stimulated nerve impulses or stimulated responses, represents practical verifications of the innovative definitions of the electric charges and the nerve impulses. Comparing the functioning of the thermoelectric generators and the brain neurons, such neurons are defined as thermoelectric generators of the electric nerve impulses and their propagating, or action, potential.展开更多
The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were prop...The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.展开更多
To evaluate the gastrocnemius/soleus and biceps brachii muscle stiffness by Acoustic Radiation Force Impulse (ARFI) elastography in the hemiplegia patients, sixty patients with hemiplegia after stroke were recruited. ...To evaluate the gastrocnemius/soleus and biceps brachii muscle stiffness by Acoustic Radiation Force Impulse (ARFI) elastography in the hemiplegia patients, sixty patients with hemiplegia after stroke were recruited. Baseline data were collected including age, gender, body mass index, education level, dominant side, affected side, time since stroke, stroke etiology. All patients were evaluated with before treatment and posttreatment with Broonstroom staging, Modified Ashworth spasticity scale, and Functional Independence Measures scale. The patient was divided into 3 groups: 1) Neuromuscular electrical stimulation group, 2) Rehabilitation group, 3) Neurumusculer electrical stimulation + Rehabilitation group. Affected and unaffected side biceps and gastrocnemius, ARFI elastography measurements were used to measure thickness and elastic values. In addition, before and after treatment, length and thickness were measured from all patients. Of the 60 subjects, 28 were female (46.7%) and 32 (53.3%) were males, with an average age of 58.42 ± 9.03 years. There was a significant difference between the upper and lower limbs after the treatment in terms of Brunstroom staging. In terms of Modified Ashworth scale, there was a significant difference in lower extremity only after treatment. When compared to the affected/unaffected side, before and after treatment, there was a significant difference in the measurements in both the medial gastrocnemius and the lateral gastrocnemius in all three groups. Further research with larger numbers of patients for longer periods is needed to clarify the relationship between the muscle hardness and degree of spasticity.展开更多
Noise characteristics of an indoor power line network strongly influence the link capability to achieve high data rates. The appliances shared with PLC modems in the same powerline network generate different types of ...Noise characteristics of an indoor power line network strongly influence the link capability to achieve high data rates. The appliances shared with PLC modems in the same powerline network generate different types of noises, among them the impulsive noises are the main source of interference resulting in signal distortions and bit errors during data transmission. With regard to impulsive noise many models were proposed in the literature and shared the same impulsive noise definition: “unpredictable noises measured in the receiver side”. Authors are, consequently, confronted to model thousands of impulsive noises whose plurality would very likely come from the diversity of paths that the original impulsive noise took. In this paper, an innovative modelling approach is applied to impulsive noises which are studied here directly at their sources. Noise at receiver would be simply the noise model at source convolved by powerline channel block. In the new analytical model, the impulsive noise at source is described by a succession of short pulses, each modeled by a phase-shifted Gaussian. Noises at source are classified into 6 different classes [1], and a noise generator is established for each class.展开更多
In phloem transport, whether protoplasmic activity participates in assisting sap flow in sieve element_companion cell complex has long been in debate. The present investigation assumed microfilament (MF) and microtubu...In phloem transport, whether protoplasmic activity participates in assisting sap flow in sieve element_companion cell complex has long been in debate. The present investigation assumed microfilament (MF) and microtubule (MT), the two constituents of the protoplasmic cytoskeleton, as motive force, and employed germinating pea seedling suspended in moist chamber as experimental material: the seed being the source; the elongating root, the sink. 14 C_labeled sucrose was added to the seed as indicator. The amount of sap transported from source to sink was measured by the increase in root elongation. The transport phloem was within the cylinder of the peeled root in the middle. The exposed cylinder was treated with MF inhibitor (cytochalasin B), or microtubule inhibitor (amiphos_methyl). Results showed that the sap influx into the elongating root, and the 14 C activity as well, was reduced by about one half in treatment with cytochalasin B, and much less by amiphos_methyl treatment. Similar effect was shown in electrical impulse treatment, which seems to disrupt the MF and MT configuration.展开更多
基金supported in part by National Basic Research Program of China(973 Project)(No.2014CB239501)National Natural Science Foundation of China(Nos.51707100,51377089)+1 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE16208)China Postdoctoral Science Foundation(No.2016M591176)
文摘In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.
基金supported by the New Jersey Health Foundation under Grant#PC94-17the National Institute of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number P41EB001046(both to JK)
文摘Information from the brain travels back and forth along peripheral nerves in the form of electrical impulses generated by neurons and these impulses have repetitive patterns. Schwann cells in peripheral nerves receive molecular signals from axons to coordinate the process of myelination. There is evidence, however,that non-molecular signals play an important role in myelination in the form of patterned electrical impulses generated by neuronal activity. The role of patterned electrical impulses has been investigated in the literature using co-cultures of neurons and myelinating cells. The co-culturing method, however, prevents the uncoupling of the direct effect of patterned electrical impulses on myelinating cells from the indirect effect mediated by neurons. To uncouple these effects and focus on the direct response of Schwann cells,we developed an in vitro model where an electroconductive carbon fiber acts as an artificial axon. The fiber provides only the biophysical characteristics of an axon but does not contribute any molecular signaling.In our "suspended wire model", the carbon fiber is suspended in a liquid media supported by a 3D printed scaffold. Patterned electrical impulses are generated by an Arduino 101 microcontroller. In this study, we describe the technology needed to set-up and eventually replicate this model. We also report on our initial in vitro tests where we were able to document the adherence and ensheath of human Schwann cells to the carbon fiber in the presence of patterned electrical impulses(hSCs were purchased from ScienCell Research Laboratories, Carlsbad, CA, USA; ScienCell fulfills the ethic requirements, including donor's consent). This technology will likely make feasible to investigate the response of Schwann cells to patterned electrical impulses in the future.
基金Electric Ship Research De- velopment and Consortium (ESRDC) for providing financial support for the research work
文摘Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in order to compare the aging phenome- non under multi-stress conditions, additional EPR cable samples were aged by rated AC voltage and current with switching impulses superimposed. We used measurements of partial discharge parameters to monitor the cables’ conditions during their aging process, and the AC breakdown voltages measurement to evaluate the cables after aging. Moreover, the Fourier transform infrared (FTIR) spectroscopy measurements revealed the changes of insulation materials after aging. The measurement results confirm that the accelerated aging of cable samples had taken place. The impacts of each individual aging factor are shown through the selected measurements and comparison. The study also helps to assess the reliability of the XLPE and EPR cables under similar condition while serving in power systems.
文摘The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency with the secondary electron emission coefficient (δ) of the corona electrode as an intermediary: when the impulse voltage power ( W ) was fixed the corona electrode material with higher δ could induce higher decomposition efficiency. In these experiments, wolfram electrode which has the highest δ has really induced the highest decomposition efficiency.
基金supported by a grant from Wonkwang Institute of Clinical Medicine in 2011
文摘Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10^th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Com- pared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord.
文摘Transient over voltages due to lightning and switching surges cause steep build-up of voltage on transmission lines and other electrical apparatus,like circuit breakers,transformers,insulators etc.Therefore it is necessary for the GIS also to withstand such voltages without breakdown of Insulation.The system has to be tested under these conditions.Usually the GIS system operates on power frequency.Lightning Impulse Voltage of 1050 kV and Switching Impulse Voltage of 750 kV superimposed on Power frequency voltages of 75 kV,100 kV and 132 kV are applied to Single Phase Gas Insulated Busduct and the maximum movement of Aluminum,Copper and Silver particles is determined.The movement patterns are also determined with and without Monte Carlo Simulation for movement of particle in axial and radial directions.The results show that there is a sudden jump in the movement at the application of impulse on sine wave.This is because of high magnitude voltage of 1050 kV during 1.2/50 μs.Similar movement patterns of reduced maximum movement is observed for Switching Impulse superimposed on sine wave.The results are presented and analyzed.
基金supported by the National Natural Science Foundation of China (Grant No. 72060302)
文摘Energy especially for rapid electricity consumption increasing is an obvious problem during the process of urbanization and economic growth. It is also an important research field to explore intrinsic regular pattern of electricity consumption and provide solving approaches. Firstly, this paper studies the relationship between electricity consumption and urbanization via GMM model by stages and regions. The results show that the most obvious stage of urbanization on electricity consumption is the stage between 1992-2000. The residents' income has an evident infl uence on electricity consumption of east region and industry also has generated stronger driving force in central and west regions. Then the paper analyzes the relationship between urbanization and electricity consumption by impulse function and gray correlation, and the variables of urbanization and industrialization both have various positive impulse effect. Estimating the gray correlation, central provinces with high population density and large shares of industry have high correlation degree in urbanization and electricity consumption.
文摘Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action potential, which allows the propagation of such nerve impulses as electrical signals. Such measurements should guide them to a logical explanation of the nerve impulses as electric charges driven by the measured action potential. However, such logical conclusion, or explanation, is ignored due to a wrong definition of the flow of electric charges as a flow of electrons that cannot pass through neural networks. According to recent studies, electric charges are properly defined as electromagnetic (EM) waves whose energy is expressed as the product of its propagating electric potential times their entropy flow which is adhered to the flow of such energy. Such definition matches the logical conclusion of the nerve impulses as electric charges, as previously explained, and defines the entropy of the neural network, measured by Ammeters, in Watt or Joule/Volt. The measured entropy represents a neurodiagnostic property of the neural networks that measures its capacity to allow the flow of energy per unit action potential. Theoretical verification of the innovative definition of nerve impulses is presented by following an advanced entropy approach. A proper review of the machine records of the stimulating electric charges, used in the diagnosis of the neural networks, and the stimulated nerve impulses or stimulated responses, represents practical verifications of the innovative definitions of the electric charges and the nerve impulses. Comparing the functioning of the thermoelectric generators and the brain neurons, such neurons are defined as thermoelectric generators of the electric nerve impulses and their propagating, or action, potential.
文摘The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.
文摘To evaluate the gastrocnemius/soleus and biceps brachii muscle stiffness by Acoustic Radiation Force Impulse (ARFI) elastography in the hemiplegia patients, sixty patients with hemiplegia after stroke were recruited. Baseline data were collected including age, gender, body mass index, education level, dominant side, affected side, time since stroke, stroke etiology. All patients were evaluated with before treatment and posttreatment with Broonstroom staging, Modified Ashworth spasticity scale, and Functional Independence Measures scale. The patient was divided into 3 groups: 1) Neuromuscular electrical stimulation group, 2) Rehabilitation group, 3) Neurumusculer electrical stimulation + Rehabilitation group. Affected and unaffected side biceps and gastrocnemius, ARFI elastography measurements were used to measure thickness and elastic values. In addition, before and after treatment, length and thickness were measured from all patients. Of the 60 subjects, 28 were female (46.7%) and 32 (53.3%) were males, with an average age of 58.42 ± 9.03 years. There was a significant difference between the upper and lower limbs after the treatment in terms of Brunstroom staging. In terms of Modified Ashworth scale, there was a significant difference in lower extremity only after treatment. When compared to the affected/unaffected side, before and after treatment, there was a significant difference in the measurements in both the medial gastrocnemius and the lateral gastrocnemius in all three groups. Further research with larger numbers of patients for longer periods is needed to clarify the relationship between the muscle hardness and degree of spasticity.
文摘Noise characteristics of an indoor power line network strongly influence the link capability to achieve high data rates. The appliances shared with PLC modems in the same powerline network generate different types of noises, among them the impulsive noises are the main source of interference resulting in signal distortions and bit errors during data transmission. With regard to impulsive noise many models were proposed in the literature and shared the same impulsive noise definition: “unpredictable noises measured in the receiver side”. Authors are, consequently, confronted to model thousands of impulsive noises whose plurality would very likely come from the diversity of paths that the original impulsive noise took. In this paper, an innovative modelling approach is applied to impulsive noises which are studied here directly at their sources. Noise at receiver would be simply the noise model at source convolved by powerline channel block. In the new analytical model, the impulsive noise at source is described by a succession of short pulses, each modeled by a phase-shifted Gaussian. Noises at source are classified into 6 different classes [1], and a noise generator is established for each class.
文摘In phloem transport, whether protoplasmic activity participates in assisting sap flow in sieve element_companion cell complex has long been in debate. The present investigation assumed microfilament (MF) and microtubule (MT), the two constituents of the protoplasmic cytoskeleton, as motive force, and employed germinating pea seedling suspended in moist chamber as experimental material: the seed being the source; the elongating root, the sink. 14 C_labeled sucrose was added to the seed as indicator. The amount of sap transported from source to sink was measured by the increase in root elongation. The transport phloem was within the cylinder of the peeled root in the middle. The exposed cylinder was treated with MF inhibitor (cytochalasin B), or microtubule inhibitor (amiphos_methyl). Results showed that the sap influx into the elongating root, and the 14 C activity as well, was reduced by about one half in treatment with cytochalasin B, and much less by amiphos_methyl treatment. Similar effect was shown in electrical impulse treatment, which seems to disrupt the MF and MT configuration.