Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need...Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need for an environmentally friendly system that is transparent,sustainable,cost-saving,energy-efficient,agile and secure.This paper provides an overview of the emerging technologies behind smart grids and the internet of things.The dependent variables are identified by analyzing the electricity consumption patterns for optimal utilization and planning preventive maintenance of their legacy assets like power distribution transformers with real-time parameters to ensure an uninterrupted and reliable power supply.In addition,the paper sorts out challenges in the traditional or legacy electricity grid,power generation,transmission,distribution,and revenue management challenges such as reduc-ing aggregate technical and commercial loss by reforming the existing manual or semi-automatic techniques to fully smart or automatic systems.This article represents a concise review of research works in creating components of the smart grid like smart metering infrastructure for postpaid as well as in prepaid mode,internal structure comparison of advanced metering methods in present scenarios,and communication systems.展开更多
In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost e...In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.展开更多
Far-field wireless power transfer(WPT)is a major breakthrough technology that will enable the many anticipated ubiquitous Internet of Things(IoT)applications associated with fifth generation(5G),sixth generation(6G),a...Far-field wireless power transfer(WPT)is a major breakthrough technology that will enable the many anticipated ubiquitous Internet of Things(IoT)applications associated with fifth generation(5G),sixth generation(6G),and beyond wireless ecosystems.Rectennas,which are the combination of rectifying circuits and antennas,are the most critical components in far-field WPT systems.However,compact application devices require even smaller integrated rectennas that simultaneously have large electromagnetic wave capture capabilities,high alternating current(AC)-to-direct current(DC)(AC-to-DC)conversion efficiencies,and facilitate a multifunctional wireless performance.This paper reviews various rectenna miniaturization techniques such as meandered planar inverted-F antenna(PIFA)rectennas;miniaturized monopole-and dipole-based rectennas;fractal loop and patch rectennas;dielectric-loaded rectennas;and electrically small near-field resonant parasitic rectennas.Their performance characteristics are summarized and then compared with our previously developed electrically small Huygens rectennas that are proven to be more suitable for IoT applications.They have been tailored,for example,to achieve batteryfree IoT sensors as is demonstrated in this paper.Battery-free,wirelessly powered devices are smaller and lighter in weight in comparison to battery-powered devices.Moreover,they are environmentally friendly and,hence,have a significant societal benefit.A series of high-performance electrically small Huygens rectennas are presented including Huygens linearly-polarized(HLP)and circularly-polarized(HCP)rectennas;wirelessly powered IoT sensors based on these designs;and a dual-functional HLP rectenna and antenna system.Finally,two linear uniform HLP rectenna array systems are considered for significantly larger wireless power capture.Example arrays illustrate how they can be integrated advantageously with DC or radio frequency(RF)power-combining schemes for practical IoT applications.展开更多
面向差异化业务需求,电力物联网(Electric Internet of Things,EIoT)需要设计与之适配的数据处理架构,该架构将引入数据缓存、边缘处理等功能,并且涵盖EIoT中数据的清洗、过滤和融合等关键步骤。此外,在该架构基础上,需要同时满足大规...面向差异化业务需求,电力物联网(Electric Internet of Things,EIoT)需要设计与之适配的数据处理架构,该架构将引入数据缓存、边缘处理等功能,并且涵盖EIoT中数据的清洗、过滤和融合等关键步骤。此外,在该架构基础上,需要同时满足大规模数据传输需求,尤其是将电力终端的能源效率(Energy Efficiency,EE)作为保障测量、监控、控制等多个电力运行环节超可靠低延迟通信(Ultra-Reliable and Low-Latency Communication,URLLC)的重要依据。在URLLC中,功率分配被认为是提高能效与数据处理效率的有效方法。然而,由于URLLC的特殊要求,传统香农公式在其中并不适用。因此,需要使用有限块长度编码理论来确保超可靠和低延迟的通信。文中解决了EIoT中URLLC的能效优化问题,并引入自适应深度神经网络,该技术可以根据不同电力设备接入数量,动态优化深度神经网络参数。深度神经网络将要优化的功率分配函数参数化,以无监督的方式离线训练,并可以在线部署以实现实时的功率分配结果。最后,仿真结果表明了所提方法在数据处理效率方面的有效性。展开更多
Nanotechnology-inspired small-sized water-enabled electricity generation(WEG)has sparked widespread research interest,especially when applied as an electricity source for off-grid low-power electronic equipment and sy...Nanotechnology-inspired small-sized water-enabled electricity generation(WEG)has sparked widespread research interest,especially when applied as an electricity source for off-grid low-power electronic equipment and systems.Currently,WEG encompasses a wide range of physical phenomena,generator structures,and power generation environments.However,a systematic framework to clearly describe the connections and differences between these technologies is unavailable.In this review,a comprehensive overview of generator technologies and the typical mechanisms for harvesting water energy is provided.Considering the different roles of water inWEG processes,the related technologies are presented as two different scenarios.Moreover,a detailed analysis of the electrical potential formation in each WEG process is presented,and their similarities and differences are elucidated.Furthermore,a comprehensive compilation of advanced generator architectures and system designs based on hydrological cycle processes is presented,along with their respective energy efficiencies.These nanotechnology-inspired small-sized WEG devices show considerable potential for applications in the Internet of Things ecosystem(i.e.,microelectronic devices,integrated circuits,and smart clothing).Finally,the prospects and future challenges of WEG devices are also summarized.展开更多
随着电力物联网(electric Internet of Things,eIoT)技术的快速发展,海量电力设备在网络边缘环境中产生了丰富的数据。移动边缘计算(Mobile Edge Computing,MEC)技术在靠近终端设备的位置部署边缘代理可以有效减少数据处理延迟,这使其...随着电力物联网(electric Internet of Things,eIoT)技术的快速发展,海量电力设备在网络边缘环境中产生了丰富的数据。移动边缘计算(Mobile Edge Computing,MEC)技术在靠近终端设备的位置部署边缘代理可以有效减少数据处理延迟,这使其非常适用于延迟敏感的电力物联网场景。然而,目前的大多数研究没有考虑到部分边缘终端设备也可以作为代理设备提供计算服务,造成了资源浪费。为了充分利用移动边缘计算过程中边缘代理以及边缘终端设备的计算能力,提出了一种基于设备聚类的任务卸载方案。首先,基于分层DBSCAN(hierarchical density-based spatial clustering of applications with noise)算法,对系统中的静态和动态边缘设备进行聚类。其次,将任务卸载问题建模为多臂老虎机(Multi-Armed Bandits,MAB)模型,目标为最小化卸载延迟。再次,提出了一种基于自适应置信上限算法的算法来寻找簇内与簇间的卸载策略。最后,仿真结果表明,该方案在平均延迟方面表现出了更好的性能,并且设备簇的存活时间延长了10%~20%。展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A6A1A03043144)Woosong University Academic Research in 2022.
文摘Electric smart grids enable a bidirectional flow of electricity and information among power system assets.For proper monitoring and con-trolling of power quality,reliability,scalability and flexibility,there is a need for an environmentally friendly system that is transparent,sustainable,cost-saving,energy-efficient,agile and secure.This paper provides an overview of the emerging technologies behind smart grids and the internet of things.The dependent variables are identified by analyzing the electricity consumption patterns for optimal utilization and planning preventive maintenance of their legacy assets like power distribution transformers with real-time parameters to ensure an uninterrupted and reliable power supply.In addition,the paper sorts out challenges in the traditional or legacy electricity grid,power generation,transmission,distribution,and revenue management challenges such as reduc-ing aggregate technical and commercial loss by reforming the existing manual or semi-automatic techniques to fully smart or automatic systems.This article represents a concise review of research works in creating components of the smart grid like smart metering infrastructure for postpaid as well as in prepaid mode,internal structure comparison of advanced metering methods in present scenarios,and communication systems.
文摘In order to incorporate smart elements into distribution networks at ITELCA laboratories in Bogotá-Colombia, a Machine-to-Machine-based solution has been developed. This solution aids in the process of low-cost electrical fault location, which contributes to improving quality of service, particularly by shortening interruption time spans in mid-voltage grids. The implementation makes use of MQTT protocol with an intensive use of Internet of things (IoT) environment which guarantees the following properties within the automation process: Advanced reports and statistics, remote command execution on one or more units (groups of units), detailed monitoring of remote units and custom alarm mechanism and firmware upgrade on one or more units (groups of units). This kind of implementation is the first one in Colombia and it is able to automatically recover from an N-1 fault.
基金supported by the University of Technology Sydney (UTS) Chancellor’s Postdoctoral Fellowship (PRO18-6147)Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA) (PRO20-9959)
文摘Far-field wireless power transfer(WPT)is a major breakthrough technology that will enable the many anticipated ubiquitous Internet of Things(IoT)applications associated with fifth generation(5G),sixth generation(6G),and beyond wireless ecosystems.Rectennas,which are the combination of rectifying circuits and antennas,are the most critical components in far-field WPT systems.However,compact application devices require even smaller integrated rectennas that simultaneously have large electromagnetic wave capture capabilities,high alternating current(AC)-to-direct current(DC)(AC-to-DC)conversion efficiencies,and facilitate a multifunctional wireless performance.This paper reviews various rectenna miniaturization techniques such as meandered planar inverted-F antenna(PIFA)rectennas;miniaturized monopole-and dipole-based rectennas;fractal loop and patch rectennas;dielectric-loaded rectennas;and electrically small near-field resonant parasitic rectennas.Their performance characteristics are summarized and then compared with our previously developed electrically small Huygens rectennas that are proven to be more suitable for IoT applications.They have been tailored,for example,to achieve batteryfree IoT sensors as is demonstrated in this paper.Battery-free,wirelessly powered devices are smaller and lighter in weight in comparison to battery-powered devices.Moreover,they are environmentally friendly and,hence,have a significant societal benefit.A series of high-performance electrically small Huygens rectennas are presented including Huygens linearly-polarized(HLP)and circularly-polarized(HCP)rectennas;wirelessly powered IoT sensors based on these designs;and a dual-functional HLP rectenna and antenna system.Finally,two linear uniform HLP rectenna array systems are considered for significantly larger wireless power capture.Example arrays illustrate how they can be integrated advantageously with DC or radio frequency(RF)power-combining schemes for practical IoT applications.
文摘面向差异化业务需求,电力物联网(Electric Internet of Things,EIoT)需要设计与之适配的数据处理架构,该架构将引入数据缓存、边缘处理等功能,并且涵盖EIoT中数据的清洗、过滤和融合等关键步骤。此外,在该架构基础上,需要同时满足大规模数据传输需求,尤其是将电力终端的能源效率(Energy Efficiency,EE)作为保障测量、监控、控制等多个电力运行环节超可靠低延迟通信(Ultra-Reliable and Low-Latency Communication,URLLC)的重要依据。在URLLC中,功率分配被认为是提高能效与数据处理效率的有效方法。然而,由于URLLC的特殊要求,传统香农公式在其中并不适用。因此,需要使用有限块长度编码理论来确保超可靠和低延迟的通信。文中解决了EIoT中URLLC的能效优化问题,并引入自适应深度神经网络,该技术可以根据不同电力设备接入数量,动态优化深度神经网络参数。深度神经网络将要优化的功率分配函数参数化,以无监督的方式离线训练,并可以在线部署以实现实时的功率分配结果。最后,仿真结果表明了所提方法在数据处理效率方面的有效性。
基金supported by the Fundamental Research Funds for Central Universities of Hohai University(B220203014)Postgraduate Research&Innovation Program of Jiangsu Province(4200261601)+3 种基金National Natural Science Foundation of China(51909066)the Zhejiang Ocean University Talent Introduction Research Fund(No.JX6311103723)the ES Program(via Nagoya University)the JST-ERATO Yamauchi Materials Space Tectonics Project(JPMJER2003).
文摘Nanotechnology-inspired small-sized water-enabled electricity generation(WEG)has sparked widespread research interest,especially when applied as an electricity source for off-grid low-power electronic equipment and systems.Currently,WEG encompasses a wide range of physical phenomena,generator structures,and power generation environments.However,a systematic framework to clearly describe the connections and differences between these technologies is unavailable.In this review,a comprehensive overview of generator technologies and the typical mechanisms for harvesting water energy is provided.Considering the different roles of water inWEG processes,the related technologies are presented as two different scenarios.Moreover,a detailed analysis of the electrical potential formation in each WEG process is presented,and their similarities and differences are elucidated.Furthermore,a comprehensive compilation of advanced generator architectures and system designs based on hydrological cycle processes is presented,along with their respective energy efficiencies.These nanotechnology-inspired small-sized WEG devices show considerable potential for applications in the Internet of Things ecosystem(i.e.,microelectronic devices,integrated circuits,and smart clothing).Finally,the prospects and future challenges of WEG devices are also summarized.
文摘随着电力物联网(electric Internet of Things,eIoT)技术的快速发展,海量电力设备在网络边缘环境中产生了丰富的数据。移动边缘计算(Mobile Edge Computing,MEC)技术在靠近终端设备的位置部署边缘代理可以有效减少数据处理延迟,这使其非常适用于延迟敏感的电力物联网场景。然而,目前的大多数研究没有考虑到部分边缘终端设备也可以作为代理设备提供计算服务,造成了资源浪费。为了充分利用移动边缘计算过程中边缘代理以及边缘终端设备的计算能力,提出了一种基于设备聚类的任务卸载方案。首先,基于分层DBSCAN(hierarchical density-based spatial clustering of applications with noise)算法,对系统中的静态和动态边缘设备进行聚类。其次,将任务卸载问题建模为多臂老虎机(Multi-Armed Bandits,MAB)模型,目标为最小化卸载延迟。再次,提出了一种基于自适应置信上限算法的算法来寻找簇内与簇间的卸载策略。最后,仿真结果表明,该方案在平均延迟方面表现出了更好的性能,并且设备簇的存活时间延长了10%~20%。